Title of paper:
|
Direct product of finite intuitionistic anti fuzzy normed normal subrings
|
Author(s):
|
Nour Abed Alhaleem
|
Department of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
|
noorb@ymail.com
|
Abd Ghafur Ahmad
|
Department of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
|
ghafur@ukm.edu.my
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 4, pages 442–456
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.4.442-456
|
Download:
|
PDF (199 Kb, File info)
|
Abstract:
|
In this paper, we generalize direct product of finite intuitionistic anti fuzzy normal subrings over normed rings. In particular, we discuss the relation between intuitionistic anti characteristic function and direct product of finite intuitionistic anti fuzzy normed normal subrings. Finally, we give characterizations of direct product of finite intuitionistic anti fuzzy normed normal subrings and some relevant properties are presented.
|
Keywords:
|
Intuitionistic anti fuzzy normed subrings, Intuitionistic anti fuzzy normed normal subrings, Direct product of finite intuitionistic anti fuzzy normed normal subrings.
|
AMS Classification:
|
03F55, 03E72.
|
References:
|
- Abed Alhaleem, N., & Ahmad, A. G. (2021). Intuitionistic Fuzzy Normal Subrings over Normed Rings. International Journal of Analysis and Applications, 19(3), 341–359.
- Abed Alhaleem, N., & Ahmad, A. G. (2021). Intuitionistic anti fuzzy normed ideals. Notes on Intuitionistic Fuzzy Sets, 27(1), 60–71.
- Abed Alhaleem, N., & Ahmad, A. G. (2022). Intuitionistic Anti Fuzzy Normal Subrings over Normed Rings. Sains Malaysiana, 51(2), 609–618.
- Anitha, B. (2019). Properties of intuitionistic anti fuzzy normal subrings. Malaya Journal of Matematik, 7(2), 304–308.
- Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Berlin, Germany, 1–137.
- Gelfand, I. (1941). Normierte ringe. Rec. Math. [Matematicheskii Sbornik] N.S., 9(1), 3–24.
- Gupta, M., & Qi, J. (1991). Theory of T-norms and fuzzy inference methods. Fuzzy Sets and Systems, 40(3), 431–450.
- Kausar, N. (2019). Direct Product of Finite Intuitionistic Anti Fuzzy Normal Subrings over Non-associative Rings. European Journal of Pure and Applied Mathematics, 12(2), 622–648.
- Li, D., Zhang, C., & Ma, S. (2009). The Intuitionistic Anti-fuzzy Subgroup in Group G. Fuzzy Information and Engineering. Advances in Soft Computing, vol 54. Springer, Berlin, 145–151.
- Menger, K. (1942). Statistical metrics. Proceedings of the National Academy of Sciences of the United States of America, 28(12), 535–537.
- Naimark, M. A. (1959). Normed Rings. Groningen, Noordhoff.
- Schweizer, B., & Sklar, A. (1960). Statistical metric space. Pacific Journal of Mathematics, 10(1), 313–334.
- Shah, T., Kausar, N., & Rehman, I. (2012). Intuitionistic fuzzy normal subrings over a non-associative ring. Analele Universitatii “Ovidius” Constanta-Seria Matematica, 20(1), 369–386.
- Sharma, P. K. (2012). On Intuitionistic Anti-Fuzzy Submodule of a Module. International Journal of Fuzzy Mathematics & Systems, 2(2), 127–132.
- Sharma, P. K., & Bansal, V. (2012). On Intuitionistic Anti-Fuzzy Ideal in Rings. International Journal of Mathematical Sciences, 11(3–4), 237–243.
- Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|