As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Primary interval-valued intuitionistic fuzzy M group

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/28/2/120-131)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/2/120-131
Title of paper: Primary interval-valued intuitionistic fuzzy M group
Author(s):
G. Prasannavengeteswari
Ramanujan Research Center, PG and Research Department of Mathematics, Government Arts College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli), Kumbakonam-612002, Tamil Nadu, India
udpmjanani@gmail.com
K. Gunasekaran
Government Arts and Science College (Affiliated to Bharathidasan University, Tiruchirappalli), Kuttalam-609808, Tamil Nadu, India
drkgsmath@davjalandhar.com
S. Nandakumar
PG and Research Department of Mathematics, Government Arts College (Affiliated to Bharathidasan University, Tiruchirappalli), Ariyalur-621713, Tamil Nadu, India
udmnanda@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 2, pages 120–131
DOI: https://doi.org/10.7546/nifs.2022.28.2.120-131
Download:  PDF (950  Kb, File info)
Abstract: The concept of interval-valued intuitionistic fuzzy M group is extended by introducing primary interval-valued intuitionistic fuzzy M group and primary interval-valued intuitionistic fuzzy anti M group using this concept primary interval-valued intuitionistic fuzzy M group and primary interval-valued intuitionistic fuzzy anti M group is defined and using some properties are established.
Keywords: Intuitionistic fuzzy set, Primary interval-valued intuitionistic fuzzy M group, Primary interval-valued intuitionistic fuzzy anti M group, Primary interval-valued intuitionistic fuzzy M group, Primary interval-valued intuitionistic fuzzy anti M group.
AMS Classification: 03E72.
References:
  1. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer Physica-Verlag.
  2. Atanassov, K. T. (2020). Interval-Valued Intuitionistic Fuzzy Sets, Springer Cham.
  3. Balasubramanian, A., Muruganantha Prasad, K. L., & Arjunan, K. (2015). Bipolar Interval Valued Fuzzy Subgroups of a Group, Bulletin of Mathematics and Statistics Research, 3(3), 234–239.
  4. Chakrabarthy, K., Biswas, R., & Nanda, S. (1997). A note on union and intersection of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(4), 34–39.
  5. Gunasekaran, K., & Gunaseelan, D. (2017). Some Operations on Bipolar Intuitionistic M-Fuzzy Group and Anti M-Fuzzy Group, International Journals of Advanced Research in Science, Engineering and Technology, 4(3), 3511–3518.
  6. Lee, K. M. (2000). Bipolar valued fuzzy sets and their operations. Proceeding of International Conference on Intelligent Technologies, Bangkok, Thailand, 307–312.
  7. Palanivelrajan, M., & Nandakumar, S. (2012). Intuitionistic Fuzzy Primary and Semiprimary Ideal. Indian Journal of Applied Research, 59(1), 159–160.
  8. Prasannavengeteswari, G., Gunasekaran, K., & Nandakumar, S. (2021). Primary Bipolar Intuitionistic M Fuzzy Group. Journal of Shanghai Jiaotong University, 17(4), 82–92.
  9. Rosenfeld, A. (1971). Fuzzy Groups, Journal of Mathematical Analysis and Its Application, 35, 512–517.
  10. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
  11. Zhang, W. R. (1998). Bipolar fuzzy sets. Proceeding of FUZZ-IEEE, 835–840.
  12. Zimmermann, H. J. (1985). Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff Publishing Co.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.