As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Connectedness concept in intuitionistic fuzzy topological spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/27/1/72-82)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/27/1/72-82
Title of paper: Connectedness concept in intuitionistic fuzzy topological spaces
Author(s):
Md. Aman Mahbub
Department of Mathematics, Comilla University, Comilla-3506, Bangladesh
rinko.math@gmail.com
Md. Sahadat Hossain
Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
sahadat@ru.ac.bd
M. Altab Hossain
Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
al_math_bd@ru.ac.bd
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 1, pages 72–82
DOI: https://doi.org/10.7546/nifs.2021.27.1.72-82
Download:  PDF (799  Kb, File info)
Abstract: The purpose of this paper is to establish the connectedness in intuitionistic fuzzy topological space. In this paper we give six notions of separatedness, connectedness and total connectedness and one notion of T1-space in intuitionistic fuzzy topological space. Also, we find a relation between classical topology and intuitionistic fuzzy topology. Further, we show that connectedness in intuitionistic fuzzy topological spaces are productive and we demonstrate some of its features.
Keywords: Fuzzy set, Intuitionistic fuzzy set, Intuitionistic topological space, Intuitionistic fuzzy topological space, Intuitionistic fuzzy connectedness, Intuitionistic fuzzy T1-space.
AMS Classification: 03E72
References:
  1. Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On Intuitionistic Fuzzy T0 Spaces. Journal of Bangladesh Academy of Sciences, 38(2) 197–207.
  2. Ahmed, E., Hossain, M. S., & Ali, D. M. (2015). On Intuitionistic Fuzzy R0 Spaces. Annals of Pure and Applied Mathematics, 10(1), 7–14.
  3. Ahmed, E., Hossain, M. S., & Ali, D. M. (2015). On Intuitionistic Fuzzy R1 Spaces. Journal of Mathematics and Computer Science, 5(5), 681–693.
  4. Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On Intuitionistic Fuzzy T1 Spaces. Journal of Physical Sciences, 19, 59–66.
  5. Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On Intuitionistic Fuzzy T2 Spaces. IOSR Journal of Mathematics, 10(6), 26–30.
  6. Ahmad, M. K., & Salahuddin, M. (2013). Fuzzy Generalized Variational Like Inequality Problems in Topological Vector Spaces. Journal of Fuzzy Set Valued Analysis, 2013(1), 1–5.
  7. Ali, A. M., Senthil, S., & Chendralekha, T. (2016). Intuitionistic Fuzzy Sequences in Metric Space. International Journal of Mathematics and its Applications, 4(1–B), 155–159.
  8. Ali, A. M., & Kanna, G. R. (2017). Intuitionistic Fuzzy Cone Metric Spaces and Fixed Point Theorems. International Journal of Mathematics and its Applications, 5(1–A), 25–36.
  9. Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  10. Barile, M. T0 space. Wolfram Mathworld. Available online at: https://mathworld.wolfram.com/T0-Space.html
  11. Bayhan, S., & Coker, D. (1996). On fuzzy separation axioms in intuitionistic fuzzy topological space. BUSEFAL, 67, 77–87.
  12. Bayhan, S., Coker, D. (2005). Pairwise separation axioms in intuitionistic topological Spaces. Hacettepe Journal of Mathematics and Statistics, 34 S, 101–114.
  13. Chang, C. L. (1968). Fuzzy Topological Space. Journal of Mathematical Analysis and Application, 24, 182–190.
  14. Coker, D. (1996). A note on intuitionistic sets and intuitionistic points. Turkish Journal of Mathematics, 20(3), 343–351.
  15. Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems, 88(1), 81–89.
  16. Coker, D., & Bayhan, S. (2001). On Separation Axioms in Intuitionistic Topological Space. International Journal of Mathematics and Mathematical Sciences, 27(10), 621–630.
  17. Coker, D., & Bayhan, S. (2003). On T1 and T2 Separation Axioms in Intuitionistic fuzzy Topological Space. Journal of Fuzzy Mathematics, 11(3), 581–592.
  18. Das, S. (2013). Intuitionistic Fuzzy Topological Spaces (MS Thesis Paper). Dept. of Math, National Inst. of Tech., India.
  19. Fang, J., & Guo, Y. (2012). Quasi-coincident neighbourhood structure of relative I-fuzzy topology and its applications. Fuzzy Sets and Systems, 190, 105–117.
  20. Hassan, Q. E. (2007). On some kinds of fuzzy connected spaces. Applications of Mathematics, 52(4), 353–361.
  21. Immaculate, H. J., & Arockiarani, I. (2015). A new class of connected spaces in intuitionistic topological spaces. International Journal of Applied Research, 1(9), 720–726.
  22. Islam, R., Hossain, M. S., & Hoque, M. F. (2020). A study on L-fuzzy T1 Spaces. Notes on Intuitionistic Fuzzy Sets, 26(3), 33–42.
  23. Islam, M. S., Hossain, M. S., & Asaduzzaman, M. (2017). Level Seperation on Intuitionistic Fuzzy T0 spaces. International Journal of Fuzzy Mathematical Archive, 13(2), 123–133.
  24. Islam, M. S., Hossain, M. S., & Asaduzzaman, M. (2018). Level separation on Intuitionistic fuzzy T2 spaces. Journal of Mathematical and Computational Science, 8(3), 353–372.
  25. Lee, S. J., & Lee, E. P. (2000). The Category of Intuitionistic Fuzzy Topological Space. Bulletin of the Korean Mathematical Society, 37(1), 63–76.
  26. Lee, S. J., & Lee, E. P. (2004). Intuitionistic Fuzzy Proximity Spaces. International Journal of Mathematics and Mathematical Sciences, 49, 2617–2628.
  27. Mahbub, M. A., Hossain, M. S., & Hossain, M. A. (2018). Some Properties of Compactness in Intuitionistic Fuzzy Topological Spaces. International Journal of Fuzzy Mathematical Archive, 16(1), 39–48.
  28. Minana, J. J., & Sostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric. Fuzzy Sets and Systems, 300, 24–39.
  29. Ozcag, S., & Coker, D. (1998). On connectedness in intuitionistic fuzzy special topological spaces. International Journal of Mathematics and Mathematical Sciences, 21(1), 33–40.
  30. Ramadan, A. A., Abbas, S. E., & Abd El-Latif, A. A. (2005). Compactness in Intuitionistic Fuzzy Topological Spaces. International Journal of Mathematics and Mathematical Sciences, 2005(1), 19–32.
  31. Sethupathy, K. S. R., & Lakshmivarahan, S. (1977). Connectedness in Fuzzy Topology. Kybernetika, 13(3), 190–193.
  32. Singh, A. K., & Srivastava, R. (2012). Separation Axioms in Intuitionistic Fuzzy Topological Spaces. Advances in Fuzzy Systems, 2012, Article ID 604396.
  33. Srivastava, S., Lal, S. N., & Srivastava, A.K. (1988). On fuzzy T0 and R0 topological spaces. Journal of Mathematical Analysis and Application, 136(1), 66–73.
  34. Srivastava, R., & Singh, A. K. (2011). Connectedness in intuitionistic fuzzy topological spaces. Comptes rendus de 1’Academie bulgare des Sciences, 64(9), 1241–1250.
  35. Talukder, M. A. M., & Ali, D. M. (2013). Some Features of Fuzzy α-Compactness. International Journal of Fuzzy Mathematical Archive, 2, 85–91.
  36. Tan, N. X. (1985). Quasi variational inequalities in topological linear locally convex Hausdorff spaces. Mathematische Nachrichten, 122, 231–245.
  37. Tamilmani, J. (2015). Presemi Weakly Closed Set in Intuitionistic Fuzzy Topological Spaces. International Journal of Fuzzy Mathematical Archive, 6(1), 27–34.
  38. Tiwari, S. P., Srivastava, A. K. (2013). Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets and Systems, 210, 63–68.
  39. Ying-Ming, L., & Mao-Kang, L. (1997). Fuzzy Topology. World Scientific Publishing Co. Pte. Ltd.
  40. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.