As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Game method for modelling with temporal intuitionistic fuzzy evaluations for locating the wildfire ignition point

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/26/4/90-106)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/26/4/90-106
Title of paper: Game method for modelling with temporal intuitionistic fuzzy evaluations for locating the wildfire ignition point
Author(s):
Veselina Bureva
Intelligent Systems Laboratory, Department of Computer Systems and Technologies, Faculty of Technical Sciences, "Prof. Dr. Asen Zlatarov" University, 1 “Prof. Yakimov” Blvd., 8010 Burgas, Bulgaria
vbureva@btu.bg
Lilija Atanassova
Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 2, 1113 Sofia, Bulgaria
l.c.atanassova@gmail.com
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria,
krat@bas.bg
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 26 (2020), Number 4, pages 90–106
DOI: https://doi.org/10.7546/nifs.2020.26.4.90-106
Download:  PDF (1445  Kb, File info)
Abstract: The concept of a temporal intuitionistic fuzzy pair is introduced. It is used for an evaluation of the results of a Game Method for Modelling applied over some areas of fire in a two-dimensional orthogonal grid of cells.
Keywords: Game method for modelling, Forest fire, Intuitionistic fuzzy set, Temporal intuitionistic fuzzy pair.
AMS Classification: 03E72.
References:
  1. Atanassov, K. (2011). Game Method for Modelling. “Prof. M. Drinov” Academic Publishing House, Sofia.
  2. Atanassov, K. Intuitionistic Fuzzy Sets. Springer, Heidelberg, 1999.
  3. Atanassov, K. On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  4. Atanassov, K. Temporal intuitionistic fuzzy pairs. Proceedings of the Jangjeon Mathematical Society (in press).
  5. Atanassov, K., & Sotirova, E. (2013). On some applications of game method for modeling, Part 4: Interpretations of some stochastic processes. Proceedings of the Jangjeon Mathematical Society, 16 (3), 301–310.
  6. Atanassov, K., E. Szmidt, J. Kacprzyk, On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No. 3, 1-13.
  7. Atanassova, L., & Atanassov, K. (2011). Intuitionistic fuzzy interpretations of Conway’s game of life. Lecture Notes in Computer Science, Vol. 6046, Springer, Berlin, 232–239.
  8. Atanassova, L., & Atanassov, K. (2013). On a Game-Method for Modeling with Intuitionistic Fuzzy Estimations. Part 2. Monte Carlo Methods and Applications (K. Sabelfeld and I. Dimov, Eds.), Walter de Gruyter GmbH, Berlin/Boston, 29–38.
  9. Atanassova, L., Atanassov, K. (2012). On a game-method for modelling with intuitionistic fuzzy estimations: Part 1, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7116, 182–189.
  10. Beighley, M., & Hyde, A. (2018). Portugal Wildfire Management in a New Era Assessing Fire Risks, Resources and Reforms, Instituto Superior D Agronomia, Universidade de Lisboa. Available online at: https://www.isa.ulisboa.pt/files/cef/pub/articles/2018-04/2018_Portugal_Wildfire_Management_in_a_New_Era_ Engish.pdf
  11. Bureva, V., L. Atanassova, K. Atanassov, A. Delkov. Application of the game method for modelling for locating the wildfire ignition point. In:- Proceedings of 4th Int. Conf. on Numerical and Symbolic Computation, Porto, April, 11–12, 2019, 397–413.
  12. Dimitrov, D. (1998). Modelling the growth and dynamics of forest stands by game-method. Advances in Modelling & Analysis, 2 (1–2), 11–22.
  13. Dimitrov, D. (1999). Modelling the growth and dynamics of forest stands by extended game-method. Advances in Modelling & Analysis, 4 (1–2), 7–21.
  14. Gardner, M. (1970). Mathematical Games – The fantastic combinations of John Conway's new solitaire game "life". Scientific American, 223, 120–123.
  15. National Wildfire Coordinating Group (2016). Guide to Wildland Fire Origin and Cause Determination, PMS 412, NFES 1874. Available online at: https://www.nwcg.gov/sites/default/files/publications/pms412.pdf
  16. San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., Ferrari, D., Maianti, P., Artés Vivancos, T., Costa, H., Lana, F., Löffler, P., Nuijten, D., Ahlgren, A. C., & Leray; T. (2018). Forest Fires in Europe, Middle East and North Africa 2017. JRC Technical Report EUR 29318 EN, ISBN 978-92-79-92831-4, doi: 10.2760/663443.
  17. Sotirova, E., Bureva, V., Velizarova, E., Fidanova, S., Marinov, P., Shannon. A., & Atanassov, K. (2013). Hexagonal Game Method model of forest fire spread with intuitionistic fuzzy estimations. Notes on Intuitionistic Fuzzy Sets, 19(3), 73–80.
  18. Sotirova, E., Atanassov, K., Fidanova, S., Velizarova, E., Vassilev, P., & Shannon, A. (2012). Application of the game method for modelling the forest fire perimeter expansion. Part 1: A model fire intensity without effect of wind, Proc. of IFAC Workshop on Dynamics and Control in Agriculture and Food Processing, Plovdiv, 13–16 June 2012, 159–163.
  19. Sotirova, E., Atanassov, K., Fidanova, S., Velizarova, E., Vassilev, P., & Shannon, A. (2012). Application of the game method for modelling the forest fire perimeter expansion. Part 2: A model fire intensity with effect of wind, Proc. of IFAC Workshop on Dynamics and Control in Agriculture and Food Processing, Plovdiv, 13–16 June 2012, 165–169.
  20. Sotirova, E., Atanassov, K., Fidanova, S., Velizarova, E., Vassilev, P., & Shannon, A. (2012). Application of the game method for modelling the forest fire perimeter expansion. Part 3: A model of the forest fire speed propagation in different homogenous vegetation types. Proc. of IFAC Workshop on Dynamics and Control in Agriculture and Food Processing, Plovdiv, 13–16 June 2012, 171–174.
  21. Sotirova, E., Dimitrov, D. & Atanassov, K. (2012). On some applications of game method for modelling Part 1: Forest dynamics. Proceedings of the Jangjeon Mathematical Society, 15(2), 115–123.
  22. Sotirova, E., Dobrinkova, N., & Atanassov, K. (2012). On some applications of game method for modeling. Part 2: Development of forest fire. Proceedings of the Jangjeon Mathematical Society, 15(3), 335–342.
  23. Sotirova, E., Sotirov, S., Atanassova, L., Atanassov, K. T., Bureva, V., & Doukovska, L. (2018). Game Method for Modelling with Intuitionistic Fuzzy Rules. In: Atanassov K. et al. (eds) Uncertainty and Imprecision in Decision Making and Decision Support: Cross Fertilization, New Models and Applications. Series Advances in Intelligent Systems and Computing, Springer, Vol 559, 153–168.
  24. Sotirova, E., Sotirov, S., Dimitrov, A., & Atanassov, K. (2013). On some applications of the game method for modelling: Part 3: Simulation of oil transformation in marine environment. Proceedings of the Jangjeon Mathematical Society, 16(2), 293–300.
  25. Sotirova, E., Velizarova, E., Fidanova, S., & Atanassov, K. (2014). Modeling forest fire spread through a game method for modeling based on hexagonal cells. Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, 8353, 321–328.
  26. Velizarova, E., Sotirova, E., Atanassov, K., Vassilev, P., & Fidanova, S. (2012). On the game method for the forest fire spread modelling with considering the wind effect. Proc. of 6th IEEE International Conference Intelligent Systems, art. no. 6335219, 216–220.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.