
90 

Notes on Intuitionistic Fuzzy Sets  

Print ISSN 1310–4926, Online ISSN 2367–8283 

Vol. 26, 2020, No. 4, 90–106 

DOI: 10.7546/nifs.2020.26.4.90-106 

 
Game method for modelling  

with temporal intuitionistic fuzzy evaluations  

for locating the wildfire ignition point  

Veselina Bureva1, Lilija Atanassova2 and Krassimir Atanassov3 

1 Intelligent Systems Laboratory, Department of Computer Systems and Technologies 

Faculty of Technical Sciences, "Prof. Dr. Asen Zlatarov" University 

1 “Prof. Yakimov” Blvd., 8010 Burgas, Bulgaria 

e-mail: vbureva@btu.bg 

2 Institute of Information and Communication Technologies  

Bulgarian Academy of Sciences,  

Acad. G. Bonchev St., Block 2, 1113 Sofia, Bulgaria 

e-mail: l.c.atanassova@gmail.com   

3 Department of Bioinformatics and Mathematical Modelling 

  Institute of Biophysics and Biomedical Engineering 

Bulgarian Academy of Sciences,  

Acad. Georgi Bonchev Str., Block 105, 1113 Sofia, Bulgaria 

e-mail: krat@bas.bg 

 

Received: 11 July 2020 Revised: 10 October 2020 Accepted: 15 November 2020 

 

Abstract: The concept of a temporal intuitionistic fuzzy pair is introduced. It is used for an 

evaluation of the results of a Game Method for Modelling applied over some areas of fire in a 

two-dimensional orthogonal grid of cells. 

Keywords: Game method for modelling, Forest fire, Intuitionistic fuzzy set, Temporal 

intuitionistic fuzzy pair. 

2010 Mathematics Subject Classification: 03E72. 



91 

1 Introduction: The concept of a temporal intuitionistic  

fuzzy pair 

First, here, for a first time, we introduce the concept of a Temporal Intuitionistic Fuzzy Pair 

(TIFP) and after this, we will illustrate it, applying this new object for evaluation of the results of 

the Game Method for Modelling (GMM, see [1]). 

Let T = {t1, t2, …} be a fixed time-scale with finite (in the present research) or infinite number 

of elements. Let E be a fixed universe. The standard Intuitionistic Fuzzy Set (IFS, see [2,3] is 

defined as the object with the form 

A = {x, µA(x),νA(x) | x∈E}. 

In [2,3], the object 

A(T) = {x, t,µA(x, t), νA(x, t) | x∈E & t∈T} 

is defined as a Temporal Intuitionistic Fuzzy Set (TIFS).  

In [6], the object x = a, b, where a, b ∈ E and a + b ≤ 1 is called an Intuitionistic Fuzzy Pair 

(IFP). By analogy with the last two concepts, here, we define the concept of a TIFP by:  

x(t) = a(t), b(t), where a(t), b(t) ∈ E and a(t) + b(t) ≤ 1, where t ∈T (the defined above  

time-scale). 

Therefore, for a fixed IFS a, b, we can define the set of TIFPs by:  

B(T) = {x(t), a(t), b(t) | t∈T} 

and obviously, this set is an ordinary IFS with universe T. The TIFPs have all properties of the 

standard IFPs, described in [4]. Below, we illustrate the way of use of the TIFPs with an example 

related to the GMM. 

2   Game method for modelling  

The GMM is a modification of the Conway's Game of Life (CGL). Conway’s Game of Life 

(CGL) is introduced by John Conway in 1970 as a cellular automaton. A cellular automaton is 

made of a grid of cells in which finite number of states can be assigned. Each cell has a set of its 

neighborhood cells. CGL’s “universe” is an infinite two-dimensional orthogonal grid of square 

cells. The cells have two possible states “alive” or “dead”. The cells in the grid interact with its 

eight neighbors, placed vertically, horizontally or diagonally. Many variations of the presented 

rules exist and different combinations of numbers for live and died cells are also known in the 

literature. Game Method for Modelling is an extension of CGL. The following series of papers 

present the theory and applications of the GMM [1−5, 7, 8, 10, 12−21]. In the Game method for 

modelling theory several elements are necessary to be determined for starting the simulation: set 

of symbols S, an n-dimensional simplex, set of objects which are placed on the vertices on the 

simplex and a set of rules A. Each object is presented by its number, n-tuple of coordinates 

representing its location in the simplex, and a symbol from the set S determining the specifications 

of the object.  
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In our case the space is two-dimensional, the symbols are the natural numbers from 0 to 9 and 

they represent the quantity of wood mass per unit square.   

The initial configuration is the combination of all ordered sets of (n + 2)-tuples having as an 

initial component the identification number of the object; having the second, third, etc. 

component up to the (n + 1)-st component being the object’s coordinates; and the (n + 2)-nd 

component being its symbol from the set S. The final configuration has the same format but after 

the procedure of modification during a given number of times when the rules from A have been 

applied. An elementary step in the transformation of the model is the single application of a rule 

from A over a given configuration K and will be denoted by A(K). In this sense, if K is an initial 

configuration, and L is a final configuration derived from K through multiple application the rules 

from A, then configurations K0, Ki, ..., Km will exist, for which: 

K0 = K, 

 Ki+1 = A1(Ki),  for 0 < i < m – 1, (1) 

Km = L. 

The algorithm for applying the GMM is described in details in [1]. 

3 Application of the game method for modelling 

for locating of the forest fire ignition point 

Below, we use as a basis our previous paper [11]. There, if some rule determines that symbol B 

must be changed with symbol C, further we denote this fact by B → C. 

The rules for changing the digits during the fire: 

A.1. R → R; 

A.2.  S → S; 

A.3. n → n – 1, for n ∈ [1, 9]; 

A.4. 1 → 0. 

Here R denotes river, S denotes rock or stones, and as was stated above the digits represent the 

quantity of wood mass (burning resource) per unit square.  

On the first step, we take a field of the forested area in the form grid with the above denotations 

(configuration Kb). On the next step, we take the same field but with configuration Ka after the 

fire has burned out. Then we build a configuration D0 = Kb – Ka. This configuration contains as 

elements digits corresponding to the quantity of burned wood mass. Using the above rules in 

stepwise manner from configuration D0 we obtain subsequently configurations D1, D2, … . This 

process of generating configurations ends when in the field remain only few squares containing 

the number 1. These squares are the potential ignition points of the fire. For each of them we 

determine its coordinates and after that for each of them we consider sequentially the initial 



93 

configuration Kb in which at the point with the respective coordinates a fire occurs. On this 

configuration we apply the following rules: 

B.1. R → R; 

B.2. S → S; 

B.3. 0 → 0; 

B.4. In the initial time-step, the fire starts from a fixed cell containing digit n (1 > n > 9) that 

represents the density of the trees in the forest. On the second time-step for the same cell  

n → (n – 1). On the third time-step for the same cell 

 ( )
0, if 1

1
2, if 1

n
n

n n

=
− → 

− >
 (2) 

B.5. In the same moment all neighbour cells of the cell with the fire change their digits 

according to (2); 

B.5. In the next moment all cells with fire change their digits by (2) and all their neighbouring 

cells in which there is no fire before the present moment, also change their digits according to 

(2); 

B.6. The process continues until all cells in the region contain only digit 0. In the opposite 

case, go to B.5. 

As a result for each potential ignition point with coordinates (p,q) we obtain a final 

configuration Kf ( p,q) and we compare each of them to the configuration Ka. The one that 

resembles the most Ka in shape and value of digits corresponds to the most likely origin of fire.  

Following [11], the cell in the configuration Kb containing number 9 is a cell with highest 

quantity of wood mass before the fire. The field also contains cells marked with letters R and S 

used for determining the places with rivers (water) and stones or rocks (Fig. 1). 

 

Figure 1. Grid of cells in the initial configuration Kb 
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Figure 2. Grid of cells in the final configuration Ka 

The final configuration Ka represents the same field after the fire. The affected cells by the 

forest fire contain the smaller digit or the number 0. The cell with value 0 is a “dead cell” or the 

cell is devastated by the fire. The containing the letters R and S determine again the places with 

rivers (water) and stones or rocks, respectively, and they remain unchanged (Fig. 2). 

For brevity, we assume that the fire region has the rectangular (square) form from Fig. 1 with 

81 cells, but in the present case, the region in which there is fire contains 49 cells. 

Let us define the TIFPs a(t), b(t) as follows: 

• a(t) is the number of cells of the region without fire in the time-moment t, 

• b(t) is the number of cells of the region in which the fire had burn totally the forest in the 

time-moment t. 

Therefore, the number 1 – a(t) – b(t) corresponds to the number of cells in which the fire 

continues to exist. 

In [11], thereafter we transform the model to calculate the difference between the initial 

configuration Kb and the final configuration Ka to determine the configuration the fire damages 

D0. The cells containing the digit “0” are the parts of the area that are not affected by the fire. For 

instance, the two cells containing 7 in the lower right corner of the field correspond to parts of 

the forest on the opposite of the river, which have remained undisturbed by the fire (cf. Figs. 1, 2 

and 3).  The cells containing values in the range of [1, 9] are devastated with different degrees of 

damages. The stones (or rocks) and rivers (S and R) are cells that cannot be affected by the fire. 

The GMM over the area burned by the forest fire will be applied to detect the origin of the fire. 

 

Figure 3. Grid of cells in the configuration with the fire damages D0 
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Here, we omit the steps of searching of the possible wild fire ignition points and show only 

the final result of this search – Fig. 4. 

The application of the GMM over selected area determines two possible ignition points for 

locating the fire. Considered together these cells can be investigated as a single origin from which 

the fire has started, or that both ignition points have been activated simultaneously. Applying the 

rules B described above we obtain the different final configurations as we discussed above. In 

this manner we determine the possible points of origin of forest fire.  

 

Figure 4. Grid of cells after the sixth iteration D6 

In the first case we consider that the fire is started form the cells with digit 8 form the ignition 

points from the previous example. The rules B will be applied over the grid of cells to obtain the 

final configurations comparable with the final configuration discussed above (Fig. 2). The initial 

configuration is presented (Fig. 5). Sixth iterations of the GMM are performed (Fig. 6 – Fig. 11). 

The resulting configuration (Fig. 11) is compared with the final configuration (Fig. 2) to find 

possible similarities. Obviously, there are two grid of cells that are not exactly the same. 

However, we can conclude that the resulting grids are congruent according to the half closest 

digits in the cells. 

 

Figure 5. Grid of cells after activating the first cell  

with a TIFP a(0), b(0) = 40/49, 0 
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Figure 6. Grid of cells after the activating the first cell–first iteration E1  

with a TIFP a(1), b(1) a(1), b(1) = 40/49, 0 

 

Figure 7. Grid of cells after the activating the first cell–second iteration E2  

with a TIFP a(2), b(2) = 37/49, 0 

 

Figure 8. Grid of cells after the activating the first cell–third iteration E3  

with a TIFP a(3), b(3) = 34/49, 0 
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Figure 9. Grid of cells after the activating the first cell–fourth iteration E4  

with a TIFP a(4), b(4) = 29/81, 0 

 

Figure 10. Grid of cells after the activating the first cell–fifth iteration E5  

with a TIFP a(5), b(5) = 21/49, 0 

 

Figure 11. Grid of cells after the activating the first cell–sixth iteration E6  

with a TIFP a(6), b(6) = 11/49, 3/49 
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In the second case the fire begins from the ignition point containing the digit 9 (Fig. 12). 

GMM will be applied to determine the possible damages of the fire (Fig. 13–19). 

 
Figure 12. Grid of cells after activating the second cell  

with a TIFP c(0), d(0)= 40/49, 0 

 

Figure 13. Grid of cells after the activating the second cell–first iteration F1  

with a TIFP c(1), d(1) = 40/49, 0 

 
Figure 14. Grid of cells after the activating the second cell–second iteration F2  

with a TIFP c(2), d(2) = 34/49, 0 
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Figure 15. Grid of cells after the activating the second cell–third iteration F3  

with a TIFP c(3), d(3) = 25/49, 1/49 

 

Figure 16. Grid of cells after the activating the second cell–fourth iteration F4  

with a TIFP c(4), d(4) = 17/49, 2/49 

 

Figure 17. Grid of cells after the activating the second cell–fifth iteration F5  

with a TIFP c(5), d(5) = 7/49, 3/49 
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Figure 18. Grid of cells after the activating the second cell–sixth iteration F6  

with a TIFP c(6), d(6) = 0, 5/49 

 

Figure 19. Grid of cells after the activating the second cell–seventh iteration F7  

with a TIFP c(7), d(7) = 0, 15/49 

The resulting configuration of the presented simulation is more similar to the final 

configuration of the first application (Fig. 2). The digits of the cells are the same or similar. The 

ignition point with the digit 9 presents more accurate model of the spread of fire. 

In the third case the fire can be started with two ignition points simultaneously. The process 

of the spread of fire will be simulated using GMM in the six steps. 

In the current investigation we will consider the purpose of the fire beginning form two cells 

(Fig. 20). They will be activated and the spread of fire will be modeled. Six steps will be used to 

apply GMM (Fig. 21 – Fig. 26). Firstly, the ignition points are activated. In the second step the 

neighbors of the “alive” cells are launched. In the next steps the process is repeated. 
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Figure 20. Grid of cells before spread of fire with a TIFP e(0), f(0) = 39/49, 0 

 

Figure 21. Grid of cells after the activating the first and the second cell–first iteration G1  

with a TIFP e(1), f(1) = 39/49, 0 

 

Figure 22. Grid of cells after the activating the first and the second cell–second iteration G2  

with a TIFP e(2), f(2) = 30/49, 0 
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Figure 23. Grid of cells after the activating the first and the second cell–third iteration G3   

with a TIFP e(3), f(3) = 20/49, 1/49 

 

Figure 24. Grid of cells after the activating the first and the second cell–fourth iteration G4  

with a TIFP e(4), f(4) = 12/49, 2/49 

 

Figure 25. Grid of cells after the activating the first and the second cell–fifth iteration G5  

with a TIFP e(5), f(5) = 2/49, 3/49 
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Figure 26. Grid of cells after the activating the first and the second cell–sixth iteration G6  

with a TIFP e(6), f(6) = 0, 7/49 

The third case of the modeling of the spread of fire is the more similar to the final configuration 

of the forest fire (Fig. 2). The digits for the grid of cells are the closest with the values in the final 

configuration of the presented forest fire case. The fire develops smoothly and еvenly. Thus, in a 

stepwise manner we construct the model of the given process. 

More formally, if 
p
ijs

 is the number standing in the cell with coordinates (i, j) in the 

configuration Kp, then the difference between two configurations K1 and K2 can be estimated as 

1 2
1 2

,

d( , ) ij ij

i j

K K s s= −
. 

Then, as it is mentioned in [11], we obtain 

d(Ka, E7) = 83, 

d(Ka, F7) = 48, 

d(Ka, G6) = 38. 

The concrete configuration Ka (Fig. 2) shows as a most possibility the situation with two 

simultaneous fires in the red points in configuration D6  (Fig. 4). 

Here, using the TIFPs, we can see that the results are respectively: 

      a(7), b(7) = 11/49, 3/49, 

 c(7), d(7) = 0, 15/49, 

e(6), f(6) = 0, 7/49. 

The TIFP, that corresponds to the region from Fig. 2 is p, q = 0, 9/49, which again shows 

as a most possibility the situation with two simultaneous fires. 
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4   Conclusions and further research 

Another possibility for representing the field is by using regular hexagons. In this case for the 

described above process before and after the fire the configurations will be as given in Fig. 27. 

In a future work we will describe the rules by which from Fig. 27 we can search for the potential 

ignition points of the fire. 

 

Figure 27. Initial configiuration – left side  

and final configuration – right side of the hexagonal grid of cells 

In the future rules will be constructed for square and hexagonal cases which take into account 

situations including presence of wind, terrains with different slopes and other factors relevant to 

the fire generation.  

In this new form of cells, TIFPs will be calculated, too. 
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