Title of paper:
|
On a special type of intuitionistic fuzzy implications
|
Author(s):
|
Krassimir Atanassov
|
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
|
krat@bas.bg
|
Guy De Tré
|
Department of Telecommunications and Information Processing Database, Document and Content Management, St.-Pietersnieuwstraat 41, B9000, Belgium
|
guy.detre@ugent.be
|
Nora Angelova
|
Faculty of Mathematics and Informatics, Sofia University, 5, James Bourchier Blvd. 1164 Sofia, Bulgaria
|
metida.su@gmail.com
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 4, pages 2—9
|
Download:
|
PDF (146 Kb Kb, File info)
|
Abstract:
|
The concept of a tautologically asymmetric intuitionistic fuzzy implication is introduced and the list of all implications with this property are given. Open problems are formulated.
|
Keywords:
|
Implication, Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
|
AMS Classification:
|
03E72
|
References:
|
- Atanassov, K. (1988). Two variants of intuitionistic fuzzy propositional calculus, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-5-88. Reprinted: Int J Bioautomation, 2016, 20(S1), S17–S26.
- Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2015) Issue:On Fodor’s type of intuitionistic fuzzy implication and negation, Notes on Intuitionistic Fuzzy Sets, 21(2), 25–34.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017) On intuitionistic fuzzy implication →187, Notes on Intuitionistic Fuzzy Sets, 23(2), 37–43.
- Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017) On intuitionistic fuzzy implication →188, Notes on Intuitionistic Fuzzy Sets, 23(1), 6–13.
- Faith, C. (1973) Algebra: Rings, Modules and Categories, Vol. 1, Springer, Berlin.
- Gries, D., & Schneider, F. (1993) A Logical Approach to Discrete Math, Springer, New York.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|