Submit your research to the International Journal "Notes on Intuitionistic Fuzzy Sets". Contact us at

Call for Papers for the 27th International Conference on Intuitionistic Fuzzy Sets is now open!
Conference: 5–6 July 2024, Burgas, Bulgaria • EXTENDED DEADLINE for submissions: 15 APRIL 2024.

Issue:Intuitionistic fuzzy implication →187

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Title of paper: Intuitionistic fuzzy implication →187
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
Eulalia Szmidt
Systems Research lnstitute - Polish Academy of Sciences, ul. Newelska 6, OL-447 Warsaw, Poland
Janusz Kacprzyk
Systems Research lnstitute - Polish Academy of Sciences, ul. Newelska 6, OL-447 Warsaw, Poland
Presented at: 21st International Conference on Intuitionistic Fuzzy Sets, 22–23 May 2017, Burgas, Bulgaria
Published in: "Notes on IFS", Volume 23, 2017, Number 2, pages 37—43
Download:  PDF (157 Kb  Kb, Info)
Abstract: In [4], some new intuitionistic fuzzy operations are defined and their properties are studied. On the basis of two of these new intuitionistic fuzzy operations, a new intuitionistic fuzzy implication is introduced here, numbered →187 and some of its properties are examined.
Keywords: Implication, Intuitionistic fuzzy implication, Intuitionistic fuzzy logic.
AMS Classification: 03E72
  1. Atanassov, K. (1988). Two variants of intuitionistic fuzzy propositional calculus, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-5-88. Reprinted: Int J Bioautomation, 2016, 20(S1), S17–S26.
  2. Atanassov, K. (2017). Intuitionistic Fuzzy Logics. Springer, Cham.
  3. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013). On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  4. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2017). Multiplicative type of operations over intuitionistic fuzzy pairs. Proceedings of FQAS’17, London, 21–22 June 2017 (in press).
  5. Van Atten, M. (2004). On Brouwer, Wadsworth, Behnout.
  6. Brouwer, L. E. J. (1975). Collected Works, Vol. 1, North Holland, Amsterdam.
  7. Van Dalen, D. (Ed.) (1981). Brouwer’s Cambridge Lectures on Intuitionism Cambridge Univ. Press, Cambridge.
  8. Klir, G., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey.
  9. Plisko, V. (2009). A survey of propositional realizability logic. The Bulleting of Symbolic Logic, 15(1), 1–42.
  10. Rose, G. F. (1953). Propositional calculus and realizability. Transactions of the American Mathematical Society, 75, 1–19.

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.