As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Numerical solution of intuitionistic fuzzy differential equations by Euler and Taylor methods

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/22/2/71-86)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/2/71-86
Title of paper: Numerical solution of intuitionistic fuzzy differential equations by Euler and Taylor methods
Author(s):
B. Ben Amma
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Said Melliani
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
said.melliani@gmail.com
Lalla Saadia Chadli
Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco
Presented at: International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 2, pages 71—86
Download:  PDF (127  Kb, File info)
Abstract: In this paper, numerical algorithms for solving intuitionistic fuzzy differential equations are considered. A scheme based on the Euler and Taylor methods of order p are discussed in detail and this is followed by a complete error analysis. Some numerical illustrations are given to show the efficiency of the algorithms.
Keywords: Euler and p-order Taylor methods, Intuitionistic fuzzy Cauchy problem, Intuitionistic fuzzy number.
AMS Classification: 03E72, 08A72.
References:
  1. Abbasbandy S., & Allah Viranloo, T. (2002) Numerical Solution of fuzzy differential equations by Taylor method, J. Comp. Methods Appl. Math. , 2, 113–124.
  2. Atanassov, K. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 87–96.
  3. Atanassov, K. (1999) Intuitionistic Fuzzy Sets, Springer Physica-Verlag, Berlin.
  4. Buckely, J. J., & Feuring, T. (2000) Fuzzy differential equations, Fuzzy Sets and Systems, 110, 43–54.
  5. Chang, S. L., & Zadeh, L. A. (1972) On fuzzy mapping and control, IEEE Trans. Systems Man Cybernet. , 2, 30–34
  6. Friedman, M. & Kandel, A. (1999) Numerical solution of fuzzy differential equations, Fuzzy Sets and Systems, 105, 133–138.
  7. Kaleva, O. (1987) Fuzzy differential equations, Fuzzy Set and Systems, 24, 301–317.
  8. Kaleva, O. (1990) The Cauchy Problem for Fuzzy Differential Equations, Fuzzy Sets and Systems, 35, 389–396.
  9. Kaleva, O. (2006) A note on Fuzzy differential equations, Nonlinear Analysis, 64, 895–900.
  10. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015) Intuitionistic fuzzy metric space, Notes on Instuitionistic Fuzzy Sets, 21(1), 43–53.
  11. Melliani, S., Ettoussi, R., Elomari, M., & Chadli, L. S. (2015) Solution of intuitionistic fuzzy differential equations by successive approximations method, Notes on Instuitionistic Fuzzy Sets, 21(2) 51–62.
  12. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015) Extension of Hukuhara difference in intuitionistic fuzzy set theory, Notes on Instuitionistic Fuzzy Sets, 21(4), 34–47.
  13. Melliani, S., & Chadli, L. C. (2003) Solution of intuitionistic fuzzy equation with extended operations, Notes on Instuitionistic Fuzzy Sets, 9(3), 26–32.
  14. Seikkala, S. (1987) On the fuzzy initial value problem, Fuzzy Sets and Systems, 24, 319–330.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.