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1 Introduction

Fuzzy Differential Equation (FDE) models have wide range of applications in many branches of
engineering and in the field of medicine. The concept of fuzzy derivative was first introduced by S.
L. Change and L. A. Zadeh in [5]. The fuzzy differential equation and initial value problems were
extensively studied by O. Kaleva in [7, 8] and by S. Seikkala in [14]. Recently, many research
papers are focused on numerical solution of fuzzy initial value problems (FIVPS). Numerical
Solution of fuzzy differential equations has been introduced by M. Ma, M. Friedman and A.
Kandel in [6] through Euler method and by S. Abbasbandy and T. Allahviranloo in [1] by Taylor
method.
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The idea of intuitionistic fuzzy sets was first published by Atanassov [2,3] as a generalization
of the notion of fuzzy sets. The existence and uniqueness of the solution of a differential equa-
tion with intuitionistic fuzzy data has been discussed in [11]. In this work, intuitionistic fuzzy
Cauchy problem is solved numerically by Euler and Taylor of order p methods under generalised
differentiability concept.

The structure of this paper is organized as follows. In Section 2, some basic results on in-
tuitionistic fuzzy sets and metric spaces, which have been discussed in [10–12], are given. In
Section 3, we define the problem that is an intuitionistic fuzzy differential equation one. Its nu-
merical solutions are the main interest of this work. Solving numerically the intuitionistic fuzzy
differential equations by Euler and Taylor methods of order p are discussed in Section 4 and
5. The proposed algorithms are illustrated by an example in Section 6 and the conclusion is in
Section 7.

2 Preliminaries

An intuitionistic fuzzy set (IFS) A ∈ X is defined as an object of the following form

A = {〈x, µA(x), νA(x)〉 | x ∈},

where the functions µA, νA(x) : X → [0, 1] define the degree of membership and the degree of
non-membership of the element x ∈ X , respectively, and for every x ∈ X

0 ≤ µA(x) + νA(x) ≤ 1.

Obviously, each ordinary fuzzy set may be written as

{〈x, µA(x), 1− µA(x)〉 | x ∈ X}.

Definition 1. [3] The value of

πA(x) = 1− µA(x)− νA(x)

is called the degree of non-determinacy (or uncertainty) of the element x ∈ X to the intuitionistic
fuzzy set A.

Remark 1. [3] Clearly, in the case of ordinary fuzzy sets, πA(x) = 0 for every x ∈ X .

We denote by

IF1 = {〈u, v〉 | R→ [0, 1]2, ∀x ∈ R 0 ≤ u(x) + v(x) ≤ 1}

the collection of all intuitionistic fuzzy number by IF1. An element 〈u, v〉 of IF1 is called intu-
itionistic fuzzy number if it satisfies the following conditions

(i) is normal, i.e., there exists x0, x1 ∈ R such that u(x0) = 1 and v(x1) = 1.
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(ii) u is fuzzy convex and v is fuzzy concave.

(iii) u is upper semi-continuous and v is lower semi-continuous.

(iv) supp(u) = cl{x ∈ R : v(x) < 1} is bounded.

Remark 2. [11] If 〈u, v〉 a fuzzy number, so we can see [〈u, v〉]α as [u]α and [〈u, v〉]α as [1− v]α.

A Triangular Intuitionistic Fuzzy Number (TIFN) 〈u, v〉 is an intuitionistic fuzzy set in R with
the following membership function u and non-membership function v:

u(x) =


x−a1
a2−a1 if a1 ≤ x ≤ a2

a3−x
a3−a2 if a2 ≤ x ≤ a3

0 otherwise

,

v(x) =



a2−x
a2−a′1

if a′1 ≤ x ≤ a2

x−a2
a′3−a2

if a2 ≤ x ≤ a′3

1 otherwise

,

where a′1 ≤ a1 ≤ a2 ≤ a3 ≤ a′3 and u(x), v(x) ≤ 0.5 for u(x) = v(x), ∀x ∈ R.
This TIFN is denoted by 〈u, v〉=〈a1, a2, a3; a

′
1, a2, a

′
3〉 where,

[〈u, v〉]α = [a1 + α(a2 − a1), a3 − α(a3 − a2)],

[〈u, v〉]α = [a′1 + α(a2 − a′1), a′3 − α(a′3 − a2)].

Definition 2. [10] The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

0(1,0)(t) =

(1, 0) t = 0

(0, 1) t 6= 0
.

Definition 3. [10] Let 〈u, v〉, 〈u′, v′〉 ∈ IF1 and λ ∈ R, we define the following operations by :(
〈u, v〉 ⊕ 〈u′, v′〉

)
(z) =

(
sup
z=x+y

min (u(x), u′(y)) , inf
z=x+y

max (v(x), v′(y))
)

λ 〈u, v〉 =

〈λu, λv〉 if λ 6= 0

0(1,0) if λ = 0
.

According to Zadeh’s extension principle, we have addition and scalar multiplication in intu-
itionistic fuzzy number space IF1 as follows :[

〈u, v〉 ⊕ 〈z, w〉
]α

=
[
〈u, v〉

]α
+
[
〈z, w〉

]α
,
[
λ 〈z, w〉

]α
= λ

[
〈z, w〉

]α
,[

〈u, v〉 ⊕ 〈z, w〉
]
α

=
[
〈u, v〉

]
α

+
[
〈z, w〉

]
α
,
[
λ 〈z, w〉

]
α

= λ
[
〈z, w〉

]
α
,

where 〈u, v〉, 〈z, w〉 ∈ IF1 and λ ∈ R.
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Definition 4. [10] Let 〈u, v〉 an element of IF1 and α ∈ [0, 1], we define the following sets :

[〈u, v〉]+l (α) = inf{x ∈ R|u(x) ≥ α}, [〈u, v〉]+r (α) = sup{x ∈ R|u(x) ≥ α},
[〈u, v〉]−l (α) = inf{x ∈ R|v(x) ≤ 1− α}, [〈u, v〉]−r (α) = sup{x ∈ R|v(x) ≤ 1− α}.

Remark 3. [10]

[〈u, v〉]α =
[
[〈u, v〉]+l (α), [〈u, v〉]+r (α)

]
, [〈u, v〉]α =

[
[〈u, v〉]−l (α), [〈u, v〉]−r (α)

]
On the space IF1 we will consider the following Lp-metric,

Theorem 1. [10] For 1 ≤ p ≤ ∞

dp(〈u, v〉, 〈z, w〉) = (
1

4
)
1
p

{∫ 1

0

∣∣∣[〈u, v〉]+r (α)− [〈z, w〉]+r (α)
∣∣∣pdα

+

∫ 1

0

∣∣∣[〈u, v〉]+l (α)− [〈z, w〉]+l (α)
∣∣∣pdα +

∫ 1

0

∣∣∣[〈u, v〉]−r (α)− [〈z, w〉]−r (α)
∣∣∣pdα∫ 1

0

∣∣∣[〈u, v〉]−l (α)− [〈z, w〉]−l (α)
∣∣∣pdα} 1

p

and for p =∞

d∞(〈u, v〉, 〈z, w〉) =
1

4

[
sup

0<α≤1

∣∣∣[〈u, v〉]+r (α)− [〈z, w〉]+r (α)
∣∣∣

+ sup
0<α≤1

∣∣∣[〈u, v〉]+l (α)− [〈z, w〉]+l (α)
∣∣∣+ sup

0<α≤1

∣∣∣[〈u, v〉]−r (α)− [〈z, w〉]−r (α)
∣∣∣

+ sup
0<α≤1

∣∣∣[〈u, v〉]−l (α)− [〈z, w〉]−l (α)
∣∣∣]

is a metric on IF1.

Definition 5. [12] Let F : [a, b]→ IF1 be an intuitionistic fuzzy valued mapping and t0 ∈ [a, b].
Then F is called intuitionistic fuzzy continuous in t0 iff:

∀ε > 0 ∃δ > 0 ∀t ∈ [a, b] such that |t− t0| < δ)⇒ d∞(F (t), F (t0)) < ε.

Definition 6. [11] F is called intuitionistic fuzzy continuous iff is intuitionistic fuzzy continuous
in every point of [a, b].

Definition 7. [12] Let 〈u, v〉 and 〈u′, v′〉 ∈ IF1, the H-difference is the IFN 〈z, w〉 ∈ IF1, if it
exists, such that

〈u, v〉 	 〈u′, v′〉 = 〈z, w〉 ⇐⇒ 〈u, v〉 = 〈u′, v′〉 ⊕ 〈z, w〉.

Definition 8. [12] A mapping F : [a, b]→ IF1 is said to be Hukuhara derivable at t0 if there exist
F ′(t0) ∈ IF1 such that both limits:

lim
∆t→0+

F (t0 + ∆t) � F (t0)

∆t
and lim

∆t→0+

F (t0) � F (t0 −∆t)

∆t

exist and they are equal to F ′(t0) = 〈u′(t0), v′(t0)〉, which is called the Hukuhara derivative of F
at t0. At the end points of [a, b] we consider only the one-sided derivatives.
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3 The intuitionistic fuzzy differential equation

In this section, we consider the initial value problem for the intuitionistic fuzzy differential equa-
tion x′(t) = f(t, x(t)) t ∈ I

x(t0) = 〈ut0 , vt0〉 ∈ IF1

, (1)

where x ∈ IF1 is unknown I = [t0, T ] and f : I × IF1 → IF1.
x(t0) is an intuitionistic fuzzy number.
Denote the α− level set

[x(t)]α =
[
[x(t)]+l (α), [x(t)]+r (α)

]
, [x(t)]α =

[
x(t)]−l (α), [x(t)]−r (α)

]
and

[x(t0)]α =
[
[x(t0)]+l (α), [x(t0)]+r (α)

]
[x(t0)]α =

[
x(t0)]−l (α), [x(t0)]−r (α)

]
[f(t, x(t))]α =

[
f+

1 (t, x(t);α), f+
2 (t, x(t);α)

]
[f(t, x(t))]α =

[
f−3 (t, x(t);α), f−4 (t, x(t);α)

]
where

f+
1 (t, x(t);α) = min

{
f(t, u)|u ∈

[
[x(t)]+l (α), [x(t)]+r (α)

]}
,

f+
2 (t, x(t);α) = max

{
f(t, u)|u ∈

[
[x(t)]+l (α), [x(t)]+r (α)

]}
,

f−3 (t, x(t);α) = min
{
f(t, u)|u ∈

[
x(t)]−l (α), [x(t)]−r (α)

]}
,

f−4 (t, x(t);α) = max
{
f(t, u)|u ∈

[
x(t)]−l (α), [x(t)]−r (α)

]}
.

(2)

Denote

f+
1 (t, x(t);α) = G

(
t, [x(t)]+l (α), [x(t)]+r (α)

)
,

f+
2 (t, x(t);α) = H

(
t, [x(t)]+l (α), [x(t)]+r (α)

)
,

f−3 (t, x(t);α) = L
(
t, [x(t)]−l (α), [x(t)]−r (α)

)
,

f−4 (t, x(t);α) = K
(
t, [x(t)]−l (α), [x(t)]−r (α)

)
.

(3)

The mapping f(t, x) is an intuitionistic fuzzy process and the derivative f (i)(t, x), for i =

1, . . . , p is defined by

[f (i)(t, x(t))]α =
[
f

+(i)
1 (t, x(t);α), f

+(i)
2 (t, x(t);α)

]
,

[f (i)(t, x(t))]α =
[
f
−(i)
3 (t, x(t);α), f

−(i)
4 (t, x(t);α)

]
,

provided that these equations determine the intuitionistic fuzzy number f (i)(t, x(t)) ∈ IF1, where

f
+(i)
1 (t, x(t);α) = min

{
f (i)(t, u)|u ∈

[
[x(t)]+l (α), [x(t)]+r (α)

]}
,

f
+(i)
2 (t, x(t);α) = max

{
f (i)(t, u)|u ∈

[
[x(t)]+l (α), [x(t)]+r (α)

]}
,

f
−(i)
3 (t, x(t);α) = min

{
f (i)(t, u)|u ∈

[
x(t)]−l (α), [x(t)]−r (α)

]}
,

f
−(i)
4 (t, x(t);α) = max

{
f (i)(t, u)|u ∈

[
x(t)]−l (α), [x(t)]−r (α)

]}
.

(4)
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Denote by C(I, IF1) the set of all continuous mappings from I to IF1.
Defining the metric

D(f, g) = sup
t∈I

d∞((f1,t, f2,t), (g1,t, g2,t))

with f(t) = (f1,t, f2,t) and g(t) = (g1,t, g2,t)

Definition 9. [11] x : I → IF1 is a solution of the initial value problem (1), if and only if it is
continuous and satisfies the integral equation

x(t) = x(t0)⊕
∫ t

t0

f(s, x(s))ds.

Denote by C(I × IF1, IF1) the set of all continuous mappings from I × IF1 to IF1.

Theorem 2. [11] Assume that f ∈ C(I × IF1, IF1) and satisfies∣∣[f(s, x(s)]+r (α)− [f(s, y(s)]+r (α)]
∣∣ ≤ k

∣∣[x(s)]+r (α)− [y(s)]+r (α)]
∣∣,∣∣[f(s, x(s)]+l (α)− [f(s, y(s)]+l (α)]

∣∣ ≤ k
∣∣[x(s)]+l (α)− [y(s)]+l (α)]

∣∣,∣∣[f(s, x(s)]−r (α)− [f(s, y(s)]−r (α)]
∣∣ ≤ k

∣∣[x(s)]−r (α)− [y(s)]−r (α)]
∣∣,∣∣[f(s, x(s)]−l (α)− [f(s, y(s)]−l (α)]

∣∣ ≤ k
∣∣[x(s)]−l (α)− [y(s)]−l (α)]

∣∣
with k|T − t0| ≤ 1. Then the initial value problem (1) has a unique solution.

Proof. See [11].

4 Euler method

Let

[X(tn)]α =
[
[X(tn)]+l (α), [X(tn)]+r (α)

]
, [X(tn)]α =

[
[X(tn)]−l (α), [X(tn)]−r (α)

]
be the exact solutions of (1) and

[x(tn)]α =
[
[x(tn)]+l (α), [x(tn)]+r (α)

]
, [x(tn)]α =

[
[x(tn)]−l (α), [x(tn)]−r (α)

]
be approximated solutions at tn, 0 ≤ n ≤ N . The solutions are calculated by grid points at

t0 < t1 < t2 < . . . < tN = T, h =
T − t0
N

, tn = t0 + nh, n = 0, 1, . . . , N (5)

Euler’s method is based on first order the approximation [X(t)]+l (α), [X(t)]+r (α), X(t)]−l (α)

and [X(t)]−r (α), given by:

Z ′(t, α) =
Z(t+ h, α)− Z(t, α)

h

where Z(t, α) is [X(t)]+l (α) or [X(t)]+r (α) or [X(t)]−l (α) or [X(t)]−r (α).

76



We get 
[X(tn+1)]+l (α) ≈ [X(tn)]+l (α) + hGn(α)

[X(tn+1)]+r (α) ≈ [X(tn)]+r (α) + hHn(α)

[X(tn+1)]−l (α) ≈ [X(tn)]−l (α) + hLn(α)

[X(tn+1)]−r (α) ≈ [X(tn)]−r (α) + hKn(α)

, (6)

where

Gn(α) = G
(
tn, [X(tn)]+l (α), [X(tn)]+r (α)

)
, Hn(α) = H

(
tn, [X(tn)]+l (α), [X(tn)]+r (α)

)
,

Ln(α) = L
(
tn, [X(tn)]−l (α), [X(tn)]−r (α)

)
, Kn(α) = K

(
tn, [X(tn)]−l (α), [X(tn)]−r (α)

)
.

From Equation (6) is defined Euler’s method as follows :
[x(tn+1)]+l (α) = [x(tn)]+l (α) + hG

(
tn, [x(tn)]+l (α), [x(tn)]+r (α)

)
[x(tn+1)]+r (α) = [x(tn)]+r (α) + hH

(
tn, [x(tn)]+l (α), [x(tn)]+r (α)

)
[x(tn+1)]−l (α) = [x(tn)]−l (α) + hL

(
tn, [x(tn)]−l (α), [x(tn)]−r (α)

)
[x(tn+1)]−r (α) = [x(tn)]−r (α) + hK

(
tn, [x(tn)]−l (α), [x(tn)]−r (α)

) . (7)

Our goal is to determine the convergence of the Euler method to exact solutions, i.e., we will
show

d∞
(
x(tn), X(tn)

)
−→ 0 when h −→ 0.

Let G(t, u+, v+), H(t, u+, v)+, L(t, u−, v)− and K(t, u−, v−) be the functions of (3), where
u+, v+, u− and v− are the constants and u+ ≤ v+ and u− ≤ v−.

The domain of G and H is

M1 = {(t, u+, v+)\ t0 ≤ t ≤ T, ∞ < u+ ≤ v+, −∞ < v+ < +∞}

and the domain of L and K is

M2 = {(t, u−, v−)\ t0 ≤ t ≤ T, ∞ < u− ≤ v−, −∞ < v− < +∞},

where M1 ⊆M2

The proof of the following theorem is similar to the convergence’s theorem of Taylor method.

Theorem 3. Let G(t, u+, v+), H(t, u+, v+) belong to C1(M1) and L(t, u−, v−), K(t, u−, v−)

belong to C1(M2) and the partial derivatives of G, H and L, K be bounded over M1 and M2,
respectively. Then, for arbitrarily fixed 0 ≤ α ≤ 1, the numerical solutions of (7) converge to the
exact solutions [X(t)]+l (α), [X(t)]+r (α), [X(t)]−l (α) and [X(t)]−r (α) uniformly in t.
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5 Taylor method of order p

Let the exact solutions

[X(t)]α =
[
[X(t)]+l (α), [X(t)]+r (α)

]
, [X(t)]α =

[
[X(t)]−l (α), [X(t)]−r (α)

]
be approximated by

[x(t)]α =
[
[x(t)]+l (α), [x(t)]+r (α)

]
, [x(t)]α =

[
[x(t)]−l (α), [x(t)]−r (α)

]
.

The Taylor method of order p is based on the expansion

x(t+ h;α) =

p∑
i=0

hi

i!
x(i)(t;α), (8)

where x(t;α) is [X(t)]+l (α) or [X(t)]+r (α) or [X(t)]−l (α) or [X(t)]−r (α).
We define:

G[t, x;α] =
∑p−1

i=0
hi

(i+1)!
f

+(i)
1 (t, x;α),

H[t, x;α] =
∑p−1

i=0
hi

(i+1)!
f

+(i)
2 (t, x;α),

L[t, x;α] =
∑p−1

i=0
hi

(i+1)!
f
−(i)
3 (t, x;α),

K[t, x;α] =
∑p−1

i=0
hi

(i+1)!
f
−(i)
4 (t, x;α).

(9)

The exact and approximate solutions at tn, 0 ≤ n ≤ N are denoted by

[X(tn)]α =
[
[X(tn)]+l (α), [X(tn)]+r (α)

]
, [X(tn)]α =

[
[X(tn)]−l (α), [X(tn)]−r (α)

]
and

[x(tn)]α =
[
[x(tn)]+l (α), [x(tn)]+r (α)

]
, [x(tn)]α =

[
[x(tn)]−l (α), [x(tn)]−r (α)

]
,

respectively. The solutions are calculated at the grid points of (5).
Using the Taylor method of order p and substituting [X(t)]+l ,[X(t)]+r ,[X(t)]−l and [X(t)]−r

into (8) and considering (9), we have :
[X(tn+1)]+l (α) ≈ [X(tn)]+l (α) + hG[t,X(tn);α]

[X(tn+1)]+r (α) ≈ [X(tn)]+r (α) + hH[t,X(tn);α]

[X(tn+1)]−l (α) ≈ [X(tn)]−l (α) + hL[t,X(tn);α]

[X(tn+1)]−r (α) ≈ [X(tn)]−r (α) + hK[t,X(tn);α]

. (10)

Hence, we get 
[x(tn+1)]+l (α) = [x(tn)]+l (α) + hG[t, x(tn);α]

[x(tn+1)]+r (α) = [x(tn)]+r (α) + hH[t, x(tn);α]

[x(tn+1)]−l (α) = [x(tn)]−l (α) + hL[t, x(tn);α]

[x(tn+1)]−r (α) = [x(tn)]−r (α) + hK[t, x(tn);α]

, (11)
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where

[x(t0)]α =
[
[x(t0)]+l (α), [x(t0)]+r (α)

]
, [x(t0)]α =

[
x(t0)]−l (α), [x(t0)]−r (α)

]
.

The following lemmas will be applied to show convergence of these approximations,

d∞
(
x(tn), X(tn)

)
−→ 0 when h −→ 0.

Lemma 1. Let the sequence of numbers {Wn}Nn=0 satisfy

|Wn+1| ≤ A|Wn|+B, 0 ≤ n ≤ N − 1

for the given positive constants A and B. Then

|Wn| ≤ An|W0|+B
An − 1

A− 1
, 0 ≤ n ≤ N.

Proof. See [9].

Lemma 2. Let the sequence of numbers {Wn}Nn=0, {Vn}Nn=0 satisfy

|Wn+1| ≤ |Wn|+ Amax{|Wn|, |Vn|}+B

|Vn+1| ≤ |Vn|+ Amax{|Wn|, |Vn|}+B

for the given positive constants A and B. Then, denoting

Un = |Wn|+ |Vn|, 0 ≤ n ≤ N,

we have

Un ≤ A
n|U0|+B

A
n − 1

A− 1
, 0 ≤ n ≤ N,

where A = 1 + 2A and B = 2B

Proof. See [9].

Let G∗(t, u+, v+), H∗(t, u+, v)+, L∗(t, u−, v)− and K∗(t, u−, v−) be the functions of G, H ,
L and K, respectively, in (9), where u+, v+, u− and v− are the constants and u+ ≤ v+ and
u− ≤ v−. In other words,

G∗(t, u+, v+) =
∑p−1

i=0
hi

(i+1)!
min{f (i)(t, τ)|τ ∈ [u+, v+]},

H∗(t, u+, v+) =
∑p−1

i=0
hi

(i+1)!
max{f (i)(t, τ)|τ ∈ [u+, v+]},

L∗(t, u−, v−) =
∑p−1

i=0
hi

(i+1)!
min{f (i)(t, τ)|τ ∈ [u−, v−]},

K∗(t, u−, v−) =
∑p−1

i=0
hi

(i+1)!
max{f (i)(t, τ)|τ ∈ [u−, v−]},

(12)
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or G∗(t, u+, v+), H∗(t, u+, v+), L∗(t, u−, v−) and K∗(t, u−, v−) are obtained by substituting
[x(t)]α = [u+, v+] and [x(t)]α = [u−, v−] into (9).
The domain of G∗ and H∗ is

M1 = {(t, u+, v+)\ t0 ≤ t ≤ T, ∞ < u+ ≤ v+, −∞ < v+ < +∞}

and the domain of L∗ and K∗ is

M2 = {(t, u−, v−)\ t0 ≤ t ≤ T, ∞ < u− ≤ v−, −∞ < v− < +∞},

where M1 ⊆M2.

Theorem 4. LetG∗(t, u+, v+),H∗(t, u+, v+) belong toCp−1(M1), andL∗(t, u−, v−),K∗(t, u−, v−)

belong to Cp−1(M2), and the partial derivatives of G∗, H∗ and L∗, K∗ be bounded over M1 and
M2, respectively. Then, for arbitrarily fixed 0 ≤ α ≤ 1, the numerical solutions of (11) converge
to the exact solutions [X(t)]+l (α), [X(t)]+r (α), [X(t)]−l (α) and [X(t)]−r (α) uniformly in t.

Proof. It is sufficient to show

d∞
(
x(tN), X(tN)

)
−→ 0 when h −→ 0,

i.e.,
limh→0[x(tN)]+l (α) = [X(tN)]+l (α)

limh→0[x(tN)]+r (α) = [X(tN)]+r (α)

limh→0[x(tN)]−l (α) = [X(tN)]−l (α)

limh→0[x(tN)]−r (α) = [X(tN)]−r (α),

(13)

where tN = T . For n = 0, 1, ..., N − 1, using the Taylor theorem, we get:

[X(tn+1)]+l (α) =

[X(tn)]+l (α) + hG∗
(
tn, [X(tn)]+l (α), [X(tn)]+r (α)

)
+

hp+1

(p+ 1)!
[X(p+1)(tn)]+l (α)(ζn,1)

[X(tn+1)]+r (α) =

[X(tn)]+r (α) + hH∗
(
tn, [X(tn)]+l (α), [X(tn)]+r (α)

)
+

hp+1

(p+ 1)!
[X(p+1)(tn)]+r (α)(ζn,2)

[X(tn+1)]−l (α) =

[X(tn)]−l (α) + hL∗
(
tn, [X(tn)]−l (α), [X(tn)]−r (α)

)
+

hp+1

(p+ 1)!
[X(p+1)(tn)]−l (α)(ζn,3)

[X(tn+1)]−r (α) =

[X(tn)]−r (α) + hK∗
(
tn, [X(tn)]−l (α), [X(tn)]−r (α)

)
+

hp+1

(p+ 1)!
[X(p+1)(tn)]−r (α)(ζn,4),

(14)
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where ζn,1, ζn,2, ζn,3, ζn,4 ∈ (tn, tn+1). Denoting

W+
n = [X(tn)]+l (α)− [x(tn)]+l (α) , V +

n = [X(tn)]+r (α)− [x(tn)]+r (α)

W−
n = [X(tn)]−l (α)− [x(tn)]−l (α) , V −n = [X(tn)]−r (α)− [x(tn)]−r (α)

(15)

from (11) and (14) it follows that:

W+
n+1 = W+

n + h
{
G∗
(
tn, [X(tn)]+l (α), [X(tn)]+r (α)

)
−G∗

(
tn, [x(tn)]+l (α), [x(tn)]+r (α)

)}
+

hp+1

(p+ 1)!
[X(p+1)(tn)]+l (α)(ζn,1)

V +
n+1 = V +

n + h
{
H∗
(
tn, [X(tn)]+l (α), [X(tn)]+r (α)

)
−H∗

(
tn, [x(tn)]+l (α), [x(tn)]+r (α)

)}
+

hp+1

(p+ 1)!
[X(p+1)(tn)]+r (α)(ζn,2)

W−
n+1 = W−

n + h
{
L∗
(
tn, [X(tn)]−l (α), [X(tn)]−r (α)

)
− L∗

(
tn, [x(tn)]−l (α), [x(tn)]−r (α)

)}
+

hp+1

(p+ 1)!
[X(p+1)(tn)]−l (α)(ζn,3)

V −n+1 = V −n + h
{
K∗
(
tn, [X(tn)]−l (α), [X(tn)]−r (α)

)
−K∗

(
tn, [x(tn)]−l (α), [x(tn)]−r (α)

)}
+

hp+1

(p+ 1)!
[X(p+1)(tn)]−r (α)(ζn,4)

Hence,
|W+

n+1| ≤ |W+
n |+ 2hD+ max{|W+

n |, |V +
n |}+ hp+1

(p+1)!
C,

|V +
n+1| ≤ |V +

n |+ 2hD+ max{|W+
n |, |V +

n |}+ hp+1

(p+1)!
C,

|W−
n+1| ≤ |W−

n |+ 2hD−max{|W−
n |, |V −n |}+ hp+1

(p+1)!
C,

|V −n+1| ≤ |V −n |+ 2hD−max{|W−
n |, |V −n |}+ hp+1

(p+1)!
C,

(16)

where

� C+
1 = max

∣∣∣[X(p+1)(tn)]+l (α)
∣∣∣ , C+

2 = max
∣∣∣[X(p+1)(tn)]+r (α)

∣∣∣,
� C−1 = max

∣∣∣[X(p+1)(tn)]−l (α)
∣∣∣ , C−2 = max

∣∣∣[X(p+1)(tn)]−r (α)
∣∣∣,

� C+ = max{C+
1 , C

+
2 } , C− = max{C−1 , C−2 }
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for t ∈ [t0, T ].
C = max{C+, C−} and D+ > 0 is a bound for the partial derivatives of G∗ and H∗, and

D− > 0 is a bound for the partial derivatives of L∗ and K∗. Therefore, from Lemma 2, we obtain

|W+
n | ≤ (1 + 4hD+)n|U+

0 |+ 2hp+1

(p+1)!
C (1+4hD+)n−1

4hD+ ,

|V +
n | ≤ (1 + 4hD+)n|U+

0 |+ 2hp+1

(p+1)!
C (1+4hD+)n−1

4hD+ ,

|W−
n | ≤ (1 + 4hD−)n|U−0 |+ 2hp+1

(p+1)!
C (1+4hD−)n−1

4hD−
,

|V −n | ≤ (1 + 4hD−)n|U−0 |+ 2hp+1

(p+1)!
C (1+4hD−)n−1

4hD−
,

(17)

where |U+
0 | = |W+

0 |+ |V −0 | et |U−0 | = |W−
0 |+ |V −0 |.

In particular

|W+
N | ≤ (1 + 4hD+)N |U+

0 |+ hp+1

(p+1)!
C (1+4hD+)

T
h −1

2hD+ ,

|V +
N | ≤ (1 + 4hD+)N |U+

0 |+ hp+1

(p+1)!
C (1+4hD+)

T
h −1

2hD+ ,

|W−
N | ≤ (1 + 4hD−)N |U−0 |+ hp+1

(p+1)!
C (1+4hD−)

T
h −1

2hD−
,

|V −N | ≤ (1 + 4hD−)N |U−0 |+ hp+1

(p+1)!
C (1+4hD−)

T
h −1

2hD−
.

(18)

Since |W+
0 | = |V +

0 | = |W−
0 | = |V −0 | = 0, we have

|W+
N | ≤ C

e4TD+ − 1

2D+(p+ 1)!
hp, |V +

N | ≤ C
e4TD+ − 1

2D+(p+ 1)!
hp,

|W−
N | ≤ C

e4TD− − 1

2D−(p+ 1)!
hp, |V −N | ≤ C

e4TD− − 1

2D−(p+ 1)!
hp.

We have

d∞(x(tN), X(tN)) =
1

4

[
sup

0<α≤1
|W+

N |+ sup
0<α≤1

|V +
N |+ sup

0<α≤1
|W−

N |+ sup
0<α≤1

|V −N |
]
.

Thus, if h → 0, we get W+
N → 0, V +

N → 0, W−
N → 0 and V −N → 0, which completes the

proof.

6 Example

Consider the intuitionistic fuzzy initial value problem{
x′(t) + x(t) = σ(t),∀t ≥ 0

x0 = (−1, 1, 0,−3
2
, 3

2
)

(19)
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and σ(t) = 2 exp(−t)x0.
Applying the method of solution proposed in [11] we get the differential system

[x′(t)]+l (α) + [x(t)]+l (α) = 2(α− 1) exp(−t) , [x(0)]+l = (α− 1)

[x′(t)]+r (α) + [x(t)]+r (α) = 2(1− α) exp(−t) , [x(0)]+r = (1− α)

[x′(t)]−l (α) + [x(t)]−l (α) = −3α exp(−t) , [x(0)]−l = −3
2
α

[x′(t)]−r (α) + [x(t)]−r (α) = 3α exp(−t) , [x(0)]−r = 3
2
α

,

we find 

[x(t)]+l (α) = (α− 1) exp(−t)(1 + 2t)

[x(t)]+r (α) = (1− α) exp(−t)(1 + 2t)

[x(t)]−l (α) = (3t+ 3
2
)(α− 1)) exp(−t)

[x(t)]−r (α) = (3t+ 3
2
)(1− α)) exp(−t)

.

Therefore, the exact solutions is given by

[X(t)]α =
[
(α− 1) exp(−t)(1 + 2t), (1− α) exp(−t)(1 + 2t)

]
,

[X(t)]α =
[
(3t+ 3

2
)(α− 1) exp(−t), (3t+ 3

2
)(1− α) exp(−t)

]
,

which at t = 0.3 are

[X(0.3)]α =
[
(α− 1) exp(−0.3)(1.6), (1− α) exp(−0.3)(1.6)

]
,

[X(0.3)]α =
[
(0.9 + 3

2
)(α− 1) exp(−0.3), (0.9 + 3

2
)(1− α) exp(−0.3)

]
.

Using the Euler method, we have

[x(tn+1)]+l (α) = (1− h)[x(tn)]+l (α) + h[σ(tn)]+l (α)

[x(tn+1)]+r (α) = (1− h)[x(tn)]+r (α) + h[σ(tn)]+r (α)

[x(tn+1)]−l (α) = (1− h)[x(tn)]−l (α) + h[σ(tn)]−l (α)

[x(tn+1)]−r (α) = (1− h)[x(tn)]−r (α) + h[σ(tn)]−r (α)
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and the Taylor method of order p, we have

[x(tn+1)]+l (α) = [x(tn)]+l (α) +
∑p−1

i=0
hi+1

(i+1)!

(
[σ(i)(tn)]+l (α)− [x(i)(tn)]+l (α)

)
[x(tn+1)]+r (α) = [x(tn)]+r (α) +

∑p−1
i=0

hi+1

(i+1)!

(
[σ(i)(tn)]+r (α)− [x(i)(tn)]+r (α)

)
[x(tn+1)]−l (α) = [x(tn)]−l (α) +

∑p−1
i=0

hi+1

(i+1)!

(
[σ(i)(tn)]−l (α)− [x(i)(tn)]−l (α)

)
[x(tn+1)]−r (α) = [x(tn)]−r (α) +

∑p−1
i=0

hi+1

(i+1)!

(
[σ(i)(tn)]−r (α)− [x(i)(tn)]−r (α)

)
The exact and approximate solutions by Euler method are plotted at t = 0.3 and h = 0.25 in
Fig. 1.

Figure 1. h = 0.25

The exact and approximate solutions for p = 2 and p = 4 are compared and plotted at t = 0.3

and h = 0.25 in Figs. 2 and 3.

Figure 2. h = 0.25
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Figure 3. h = 0.25

The error between the Euler and the 2nd-order and 4th-order Taylor method is plotted in
Fig. 4.

Figure 4. h = 0.25

7 Conclusion

It is shown that the convergence order of the Taylor method is O(hp), while the Euler method
converges with the rate O(h) only. Comparison of the solutions of the example shows that the
Taylor method gives a better solution than the Euler method.
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