As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Λ-Statistical convergence of order α in intuitionistic fuzzy n-normed spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
(Redirected from Issue:Nifs/22/2/32-43)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/22/2/32-43
Title of paper: λ-Statistical convergence of order α in intuitionistic fuzzy n-normed spaces
Author(s):
Ekrem Savaş
Department of Mathematics, Istanbul Ticaret University, Sütlüce, Istanbul, Turkey
ekremsavas@yahoo.com
Mahpeyker Öztürk
Department of Mathematics, Sakarya University, 54187, Turkey
mahpeykero@sakarya.edu.tr
Presented at: International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 2, pages 32—43
Download:  PDF (127  Kb, File info)
Abstract: In the present paper, we introduce the notion [V, λ](I)-summability and Iλ-statistical convergence of order α in the framework of intuitionistic fuzzy n-normed space, briefly IFnNS, also we examine the relationship between these classes.
Keywords: I-statistical convergence, Iλ-statistical convergence of order α, I–[V, λ]-summability, intuitionistic fuzzy n-normed space.
AMS Classification: 40G99, 40A05.
References:
  1. Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.
  2. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
  3. Atanassov, K., Pasi, G. & Yager, R. (2002) Intuitionistic fuzzy interpretations of multi-person multicriteria decision making. Proceedings of 2002 First International IEEE Symposium Intelligent Systems, 1, 115–119.
  4. Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
  5. Saadati, R. & Park, J. H. (2006) On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27, 331–344.
  6. Karakus, S., Demirci, K. & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35, 763–769.
  7. Mursaleen, M., Mohiuddine, S. A. & Edely, H. H. (2010) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59, 603–611.
  8. Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54, 2978–2985.
  9. Narayanan, Al. & Vijayabalaji, S. (2005) Fuzzy n-normed linear space, Int. J. Math. Sci., 24, 3963–3977.
  10. Narayanan, Al., Vijayabalaji, S. & Thillaigovindan, N. (2005), Intuitionistic fuzzy bounded linear operators, Iran. J. Fuzzy Systems, 4, 89–101.
  11. Thillaigovindan, N., Shanthi, S. A. & Jun, Y. B. (2011) On lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Annals of Fuzzy Math. and Inf., 1(2), 119–131.
  12. Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
  13. Schoenberg, I. J. (1959) The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361–375.
  14. Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
  15. Salat, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
  16. Mursaleen, M. (2010) Statistical convergence in random 2-normed spaces, Acta Sci. Math. (Szeged), 76, 101–109.
  17. Savaş, E. (2012) λ-statistical convergence in random 2-normed space, Iranian J. Sci. and Tech., A4, 417–423.
  18. Savaş, E. (2015) λ-statistical convergence in intuitionistic fuzzy 2-normed space, Appl. Math. Inf. Sci., 9(1), 501–505.
  19. Das, P., Savaş, E. & Ghosal, S. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24, 1509–1514.
  20. Savaş, E. & Das, P. (2011) A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
  21. Savaş, E. & Gürdal, M. (2015) A generalized statistical convergence in intuitionistic fuzzy normed space, Science Asia, 41, 289–294.
  22. Schweizer, B. & Sklar, A. (1960) Statistical metrics paces, Pacific J. Math., 10, 313–334.
  23. Savaş, E. summability methods in intuitionistic fuzzy 2-normed spaces, (to appear).
  24. Mohiuddine, S. A. & Lohani, Q. M. D. (2009) On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 42, 1731–1737.
  25. Savaş, E. (2015) On λ-statistical convergence of order α in intuitionistic fuzzy normed spaces. Notes on Intuitionistic Fuzzy Sets, 21(4), 13–22.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.