Title of paper:
|
λ-Statistical convergence of order α in intuitionistic fuzzy n-normed spaces
|
Author(s):
|
Ekrem Savaş
|
Department of Mathematics, Istanbul Ticaret University, Sütlüce, Istanbul, Turkey
|
ekremsavas@yahoo.com
|
Mahpeyker Öztürk
|
Department of Mathematics, Sakarya University, 54187, Turkey
|
mahpeykero@sakarya.edu.tr
|
|
Presented at:
|
International Conference on Intuitionistic Fuzzy Sets Theory and Applications, 20–22 April 2016, Beni Mellal, Morocco
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 22, 2016, Number 2, pages 32—43
|
Download:
|
PDF (127 Kb, File info)
|
Abstract:
|
In the present paper, we introduce the notion [V, λ](I)-summability and Iλ-statistical convergence of order α in the framework of intuitionistic fuzzy n-normed space, briefly IFnNS, also we examine the relationship between these classes.
|
Keywords:
|
I-statistical convergence, Iλ-statistical convergence of order α, I–[V, λ]-summability, intuitionistic fuzzy n-normed space.
|
AMS Classification:
|
40G99, 40A05.
|
References:
|
- Zadeh, L. A. (1965) Fuzzy sets, Inform. Control, 8, 338–353.
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
- Atanassov, K., Pasi, G. & Yager, R. (2002) Intuitionistic fuzzy interpretations of multi-person multicriteria decision making. Proceedings of 2002 First International IEEE Symposium Intelligent Systems, 1, 115–119.
- Park, J. H. (2004) Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
- Saadati, R. & Park, J. H. (2006) On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27, 331–344.
- Karakus, S., Demirci, K. & Duman, O. (2008) Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35, 763–769.
- Mursaleen, M., Mohiuddine, S. A. & Edely, H. H. (2010) On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59, 603–611.
- Sen, M., & Debnath, P. (2011) Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54, 2978–2985.
- Narayanan, Al. & Vijayabalaji, S. (2005) Fuzzy n-normed linear space, Int. J. Math. Sci., 24, 3963–3977.
- Narayanan, Al., Vijayabalaji, S. & Thillaigovindan, N. (2005), Intuitionistic fuzzy bounded linear operators, Iran. J. Fuzzy Systems, 4, 89–101.
- Thillaigovindan, N., Shanthi, S. A. & Jun, Y. B. (2011) On lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Annals of Fuzzy Math. and Inf., 1(2), 119–131.
- Fast, H. (1951) Sur la convergence statistique, Colloq. Math., 2, 241–244.
- Schoenberg, I. J. (1959) The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66, 361–375.
- Fridy, J. A. (1985) On statistical convergence, Analysis, 5, 301–313.
- Salat, T. (1980) On statistically convergent sequences of real numbers, Math. Slovaca, 30, 139–150.
- Mursaleen, M. (2010) Statistical convergence in random 2-normed spaces, Acta Sci. Math. (Szeged), 76, 101–109.
- Savaş, E. (2012) λ-statistical convergence in random 2-normed space, Iranian J. Sci. and Tech., A4, 417–423.
- Savaş, E. (2015) λ-statistical convergence in intuitionistic fuzzy 2-normed space, Appl. Math. Inf. Sci., 9(1), 501–505.
- Das, P., Savaş, E. & Ghosal, S. (2011) On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24, 1509–1514.
- Savaş, E. & Das, P. (2011) A generalized statistical convergence via ideals, Appl. Math. Lett., 24, 826–830.
- Savaş, E. & Gürdal, M. (2015) A generalized statistical convergence in intuitionistic fuzzy normed space, Science Asia, 41, 289–294.
- Schweizer, B. & Sklar, A. (1960) Statistical metrics paces, Pacific J. Math., 10, 313–334.
- Savaş, E. summability methods in intuitionistic fuzzy 2-normed spaces, (to appear).
- Mohiuddine, S. A. & Lohani, Q. M. D. (2009) On generalized statistical convergence in intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 42, 1731–1737.
- Savaş, E. (2015) On λ-statistical convergence of order α in intuitionistic fuzzy normed spaces. Notes on Intuitionistic Fuzzy Sets, 21(4), 13–22.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|