As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intuitionistic fuzzy sets in group decision making – A novel approach

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/30/2/101-112
Title of paper: Intuitionistic fuzzy sets in group decision making – A novel approach
Author(s):
Eulalia Szmidt
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
WIT Academy, ul. Newelska 6, 01-447 Warsaw, Poland
szmidt@ibspan.waw.pl
Janusz Kacprzyk
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
WIT Academy, ul. Newelska 6, 01-447 Warsaw, Poland
kacprzyk@ibspan.waw.pl
Vassia Atanassova
Department of Bioinfomatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. Georgi Bonchev Str., Sofia 1113, Bulgaria
vassia.atanassova@gmail.com
Paweł Bujnowski
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
pbujno@ibspan.waw.pl
Presented at: Proceedings of the 27th International Conference on Intuitionistic Fuzzy Sets, 5–6 July 2024, Burgas, Bulgaria
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 2, pages 101–112
DOI: https://doi.org/10.7546/nifs.2024.30.2.101-112
Download:  PDF (188  Kb, File info)
Abstract: We use the natural properties of intuitionistic fuzzy sets (IFSs for short) to represent the pros, cons, and lack of knowledge concerning different options/alternatives, aiding in decision making, particularly in group decision making. We present a novel approach. We do not compare options/alternatives in pairs, we do not use distances. The approach is transparent and easily understandable for decision makers. The novel method points out the best option by ranking them.
Keywords: Intuitionistic fuzzy sets, Decision making, Group decision making, Ranking
AMS Classification: 03E72.
References:
  1. Atanassov, K. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
  2. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag.
  4. Atanassov, K.T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer-Verlag.
  5. Atanassova, V. (2004). Strategies for Decision Making in the Conditions of Intuitionistic Fuzziness. Proceedings of Int. Conf. 8th Fuzzy Days, Dortmund, Germany, 263–269.
  6. Bujnowski, P., Szmidt, E., & Kacprzyk, J. (2014). Intuitionistic fuzzy decision trees – A new approach. In: Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L., Zurada J. (Eds.): Artificial Intelligence and Soft Computing, Part I. Springer, Switzerland, 181–192.
  7. Bustince, H., Mohedano, V., Barrenechea, E., & Pagola, M. (2006). An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. Proceedings of IPMU’2006, 2383–2390.
  8. Kacprzyk, J., Yager, R. R., & Merigo, J. M. (2019). Towards human-centric aggregation via ordered weighted aggregation operators and linguistic data summaries: A new perspective on Zadeh’s inspirations. IEEE Computational Intelligence Magazine, 14(1), 16–30.
  9. Maggiora, G., & Szmidt, E. (2021). An Intuitionistic Fuzzy Set Analysis of Drug-Target Interactions. MATCH Communications in Mathematical and in Computer Chemistry, 85(3), 465–498.
  10. Nurmi, H., & Kacprzyk, J. (1991). On fuzzy tournaments and their solution concepts in group decision making. European Journal of Operational Research, 51(2), 223–232.
  11. Nurmi, H., Kacprzyk, J., & Fedrizzi, M. (1996). Probabilistic, fuzzy and rough concepts in social choice. European Journal of Operational Research, 95(2), 264–277.
  12. Pekala, B., Grochowalski, P., & Szmidt, E. (2021). New Transitivity of Atanassov’s Intuitionistic Fuzzy Sets in Decision Making Model. International Journal of Applied Mathematics and Computer Science (AMCS), 31(4), 563–576.
  13. Roeva, O., & Michalikova, A. (2013). Generalized net model of intuitionistic fuzzy logic control of genetic algorithm parameters. Notes on Intuitionistic Fuzzy Sets, 19(2), 71–76.
  14. Szmidt, E. (2014). Distances and Similarities in Intuitionistic Fuzzy Sets. Springer.
  15. Szmidt, E., & Baldwin. J. (2003). New similarity measures for intuitionistic fuzzy set theory and mass assignment theory. Notes on Intuitionistic Fuzzy Sets, 9(3), 60–76.
  16. Szmidt, E., & Baldwin, J. (2004). Entropy for intuitionistic fuzzy set theory and mass assignment theory. Notes on Intuitionistic Fuzzy Sets, 10(3), 15–28.
  17. Szmidt, E., & Baldwin, J. (2006). Intuitionistic Fuzzy Set Functions, Mass Assignment Theory, Possibility Theory and Histograms. Proceedings of 2006 IEEE World Congress on Computational Intelligence, 237–243.
  18. Szmidt, E., & Kacprzyk, J. (1996). Group decision making via intuitionistic fuzzy sets. Proceedings of FUBEST’96, Sofia, Bulgaria, 107–112.
  19. Szmidt, E., & Kacprzyk, J. (1997). On measuring distances between intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 3(4), 1–13.
  20. Szmidt, E., & Kacprzyk, J. (1998). Group Decision Making under Intuitionistic Fuzzy Preference Relations. IPMU’98, 172–178.
  21. Szmidt, E., & Kacprzyk, J. (1998). Applications of Intuitionistic Fuzzy Sets in Decision Making. Proceedings of EUSFLAT’99, Univ. De Navarra, 150–158.
  22. Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505–518.
  23. Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467–477.
  24. Szmidt, E., & Kacprzyk, J. (2001). Analysis of Consensus under Intuitionistic Fuzzy Preferences. Proceedings of Int. Conf. in Fuzzy Logic and Technology. Leicester, UK, 79–82.
  25. Szmidt, E., & Kacprzyk, J. (2002). Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. Proceedings of 9th International Conference IPMU 2002, Annecy, France, 1859–1865.
  26. Szmidt, E., & Kacprzyk, J. (2002). Evaluation of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Sets. Proceedings of Int. IEEE Symposium on Intelligent Systems IEEE-IS’2002, Varna, Bulgaria, 166–170.
  27. Szmidt, E., & Kacprzyk, J. (2004). A Concept of Similarity for Intuitionistic Fuzzy Sets and its use in Group Decision Making. Proceedings of 2004 IEEE Conf. on Fuzzy Systems, Budapest, 1129–1134.
  28. Szmidt, E., & Kacprzyk, J. (2005). New Measures of Entropy for Intuitionistic Fuzzy Sets. Notes on Intuitionistic Fuzzy Sets, 11(2), 12–20.
  29. Szmidt, E., & Kacprzyk, J. (2005). Distances Between Intuitionistic Fuzzy Sets and their Applications in Reasoning. In: Halgamuge, S., & Wang, L. (Eds.). Computational Intelligence for Modelling and Prediction. Studies in Computational Intelligence, 2, 101–116, Springer.
  30. Szmidt, E., & Kacprzyk, J. (2005). A New Concept of a Similarity Measure for Intuitionistic Fuzzy Sets and its Use in Group Decision Making. In: Torra, V., Narukawa, Y., & Miyamoto, S. (Eds.). Modelling Decisions for Artificial Intelligence. LNAI 3558, 272–282, Springer.
  31. Szmidt, E., & Kacprzyk, J. (2006). Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. Proceedings of 3rd International IEEE Conference Intelligent Systems IEEE IS’06, London, UK, 716–721.
  32. Szmidt, E., & Kacprzyk, J. (2006). An Application of Intuitionistic Fuzzy Set Similarity Measures to a Multi-criteria Decision Making Problem. Proceedings of ICAISC 2006, LNAI 4029, Springer-Verlag, 314–323.
  33. Szmidt, E., & Kacprzyk, J. (2007). Some problems with entropy measures for the Atanassov intuitionistic fuzzy sets. Applications of Fuzzy Sets Theory., LNAI 4578, 291–297. Springer-Verlag.
  34. Szmidt, E., & Kacprzyk, J. (2007). A New Similarity Measure for Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. Proceedings of 2007 IEEE Conf. on Fuzzy Systems, 481–486.
  35. Szmidt, E., & Kacprzyk, J. (2009). Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives. In: Rakus-Andersson, E., Yager, R., Ichalkaranje, N., & Jain, L. C. (Eds.). Recent Advances in Decision Making, SCI 222., Springer-Verlag, 7–19.
  36. Szmidt, E., & Kacprzyk, J. (2009). A concept of a probability of an intuitionistic fuzzy event. Proceedings of FUZZ-IEEE’99., 3, 1346–1349.
  37. Szmidt, E., & Kacprzyk, J. (2009). Ranking of Intuitionistic Fuzzy Alternatives in a Multi-criteria Decision Making Problem. Proceedings of NAFIPS 2009, Cincinnati, USA, June 14–17, 2009, IEEE, ISBN: 978-1-4244-4577-6.
  38. Szmidt, E., & Kacprzyk, J. (2009). Analysis of Similarity Measures for Atanassov’s Intuitionistic Fuzzy Sets. Proceedings of 2009 IFSA/EUSFLAT Conference, 1416–1421.
  39. Szmidt, E., & Kacprzyk, J. (2010). The Spearman rank correlation coefficient between intuitionistic fuzzy sets. Proceedings of the 5th IEEE International Conference Intelligent Systems, London, UK, 276–280.
  40. Szmidt, E., & Kacprzyk, J. (2011). The Spearman and Kendall rank correlation coefficients between intuitionistic fuzzy sets. Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-11). DOI: 10.2991/eusflat.2011.85.
  41. Szmidt, E., & Kacprzyk, J. (2011). Intuitionistic fuzzy sets – Two and three term representations in the context of a Hausdorff distance. Acta Universitatis Matthiae Belii, Series Mathematics, 19, 53–62.
  42. Szmidt, E., & Kacprzyk, J. (2012). On an Enhanced Method for a More Meaningful Pearson’s Correlation Coefficient between Intuitionistic Fuzzy Sets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L. A., & Zurada, J. M. (Eds.). Artificial Intelligence and Soft Computing. Proceedings of ICAISC 2012. Lecture Notes in Computer Science, vol 7267, 334–341. Springer, Berlin, Heidelberg.
  43. Szmidt, E., & Kacprzyk, J. (2015). Two and three term representations of intuitionistic fuzzy sets: Some conceptual and analytic aspects. Proceedings of IEEE International Conference on Fuzzy Systems FUZZ-IEEE 2015, 1–8.
  44. Szmidt, E., & Kacprzyk, J. (2017). A Perspective on Differences Between Atanassov’s Intuitionistic Fuzzy Sets and Interval-Valued Fuzzy Sets. In: Torra, V., Dahlbom, A., & Narukawa, Y. (Eds.). Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, Volume 671, 221–237, Springer.
  45. Szmidt, E., & Kacprzyk, J. (2022). Atanassov’s Intuitionistic Fuzzy Sets Demystified. In: Ciucci, D., Couso, I., Medina, J., Slezak, D., Petturiti, D., Bouchon-Meunier, B., & Yager, R. R. (Eds.). Information Processing and Management of Uncertainty in Knowledge-Based Systems – Proceedings of the 19th International Conference, IPMU 2022, Milan, Italy, Part I, 517–527. Communications in Computer and Information Science 1601, Springer.
  46. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2020). Attribute Selection for Sets of Data Expressed by Intuitionistic Fuzzy Sets. Proceedings of 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 1–7.
  47. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2021). Three term attribute description of Atanassov’s Intuitionistic Fuzzy Sets as a basis of attribute selection. Proceedings of 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021, 1–6.
  48. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2022). Ranking of Alternatives Described by Atanassov’s Intuitionistic Fuzzy Sets – A Critical Review. Proceedings of 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2022, 1–7.
  49. Szmidt, E., Kacprzyk, J., & Bujnowski, P. (2022). Similarity measures for Atanassov’s intuitionistic fuzzy sets: Some dilemmas and challenges. Control and Cybernetics, 51(2), 249–266.
  50. Szmidt, E., Kacprzyk, J., Bujnowski, P., Starczewski, J., & Siwocha, A. (2024). Ranking of alternatives described by Atanassov’s intuitionistic fuzzy sets – Reconciling some misunderstandings. Journal of Artificial Intelligence and Soft Computing Research (in press).
  51. Szmidt, E., & Kukier, M. (2006). Classification of Imbalanced and Overlapping Classes using Intuitionistic Fuzzy Sets. Proceedings of 3rd Int. IEEE Conf. on Intelligent Systems IEEE IS’06, London, 722–727.
  52. Szmidt, E., & Kukier, M. (2008). A New Approach to Classification of Imbalanced Classes via Atanassov’s Intuitionistic Fuzzy Sets. In: Wang, H.-F. (Ed.). Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery. Idea Group, 85–101.
  53. Szmidt, E., & Kukier, M. (2008). Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Chountas, P., Petrounias, I., & Kacprzyk, J. (Eds.). Intelligent Techniques and Tools for Novel System Architectures. Springer, Series: Studies in Computational Intelligence. Berlin, Heidelberg, 455–471.
  54. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.