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1 Introduction

Decision making and group decision making are inherent, everyday human activities. To make
a decision, we should consider possible alternatives / options and pick up the best of them. We
have previously considered group decision making in [12, 20, 21, 24–27, 29, 30, 32, 37]. Here, we
propose a novel approach. We describe the alternatives / options using intuitionistic fuzzy sets
(IFSs, for short) – the apparatus proposed by Atanassov (see [1–4]). To be more precise, we use
intuitionistic fuzzy elements representing the alternatives/options. We will call the alternatives /
options intuitionistic fuzzy alternatives/options. It is a very natural approach as an intuitionistic
fuzzy element is described by three terms: membership value, non-membership value, and
hesitation margin (cf. Section 2). The three terms mean respectively: advantages, disadvantages,
and lack of knowledge concerning an option. It is worth noting that it is a very natural way of
describing options – it is the same approach what human beings do when making decisions. An
important advantage of the IFSs is an inherent possibility to take a lack of knowledge into account
by using the so-called hesitation margin or intuitionistic fuzzy index.

Thus we adhere to the highly convenient tool known as intuitionistic fuzzy sets (IFSs) for
decision making. However, we no longer employ the method of comparing options in pairs as
outlined in some previous papers. Consider we have 10 options, each option is described by three
terms. It would not be practical for a decision maker to undertake pairwise comparisons of all
options. It is better to evaluate pros, cons, and lack of knowledge of each option individually,
especially when an option is characterized by multiple attributes.

We also do not calculate distances between options, as the measure is not bijective (distances
to different options can be the same). Instead, we rank the options, pointing out the best one.

The approach is transparent, easy to understand and explain, and aligned with human thinking.

2 A brief introduction to IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh, [54]) given by

A
′
= {⟨x, µA′ (x)⟩|x ∈ X}, (1)

where µA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′ , is an IFS (Atanassov [1,3,4])
A is given by

A = {⟨x, µA(x), νA(x)⟩|x ∈ X}, (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-membership of x ∈
A, respectively. (See Szmidt and Baldwin [17] for assigning memberships and non-memberships
for IFSs from data.)

Obviously, each fuzzy set may be represented by the following IFS:

A = {⟨x, µA′ (x), 1− µA′ (x)⟩|x ∈ X}. (4)
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An additional concept for each IFS in X , that is not only an obvious result of (2) and (3) but
which is also relevant for applications, we will call (Atanassov [3])

πA(x) = 1− µA(x)− νA(x) (5)

a hesitation margin of x ∈ A which expresses a lack of knowledge of whether x belongs to A or
not (cf. Atanassov, [3]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances (Szmidt and
Kacprzyk [18, 19, 22, 29, 31], entropy (Szmidt and Kacprzyk [23, 28, 33]), similarity (Szmidt and
Kacprzyk [34, 38, 49]) for the IFSs, etc. i.e., the measures that play a crucial role in virtually all
information processing tasks (Szmidt [14]).

The hesitation margin turns out to be relevant for applications – in image processing (cf.
Bustince et al. [7]), the classification of imbalanced and overlapping classes (cf. Szmidt and
Kukier [51–53]), the classification applying intuitionistic fuzzy trees (cf. Bujnowski [6]), attribute
selection [46, 47], ranking of alternatives [48], multiagent decisions, negotiations, voting, group
decision making, etc. (cf. [5,9,12,20,21,24–26,29,30,32,37]), genetic algorithms [13]. Sometimes
the concept of the hesitation margin is just indispensable, for example, for a proper definition
of the Hausdorff distance [41], when ranking the alternatives [48], [50], calculating Pearson’s,
Spearman, Kendall rank correlations [36, 39, 40, 42], and seeing IFSs like different ones from
interval-valued fuzzy sets [44, 45].

3 Two term, and three term representation of the IFSs
as a basis for calculating distances

Almost all important measures used in the area of IFSs, as well as in other areas, are non-linear.
For example distances which play a decisive role in many models, and are a basis for many other
measures, are usually non-linear. So it seems natural to expect that quite different qualitative
results will be obtained while using the two term representation of the IFSs than the results
obtained while using the three term representation of the IFSs. Szmidt and Kacprzyk [22, 31],
Szmidt and Baldwin [15, 16] discuss the results obtained for the most often used distances when
the two and the three term representations of the IFS are used. Examples of the distances between
any two IFSs A and B in X = {x1, x2, . . . , xn} while using the three term representation (Szmidt
and Kacprzyk [22], Szmidt and Baldwin [15, 16]) may be as follows:

• the normalized Hamming distance:

lIFS(A,B) =
1

2n

n∑
i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|) (6)

• the normalized Euclidean distance:

eIFS(A,B) = (
1

2n

n∑
i=1

(µA(xi)−µB(xi))
2+(νA(xi)−νB(xi))

2+(πA(xi)−πB(xi))
2)

1
2

(7)
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The values of both distances are from the interval [0, 1].

The corresponding distances to the above ones while using the two term representation of the
IFSs are:

• the normalized Hamming distance:

l
′
(A,B) =

1

2n

n∑
i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|) (8)

• the normalized Euclidean distance:

q
′
(A,B) = (

1

2n

n∑
i=1

(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))

2)
1
2 (9)

Both the two term distances and three term distances [14,22] are correct from the mathematical
point of view, i.e., all the needed properties are fulfilled, but practical problem solutions are more
intuitively appealing while using the three term representations (cf. e.g., Szmidt and Kacprzyk
[37, 43]).

Even a more convincing argument for using the three term representation of the IFSs occurs
in the case of the Hausdorff distance based on the Hamming metric [41].

Consider in detail the meaning of the terms in the formulas (6)–(9) in the context of the
distances. When we speak of a distance in real life we often think about a distance between two
towns or two objects. We express the distance, e.g., in kilometers/metes and are satisfied when
knowing that a distance is, e.g., 100 km. When asking about a distance we are less interested in
the direction. If we assume that a goal of our trip should be not more farther away than 100 km,
we consider a circle with radius of 100 km. Any direction is acceptable.

However, when considering distances in different mathematical models, the distance
components usually have their specific meaning.

Example 1. Imagine an element x0(0.5, 0.2, 0.3) and two other elements: x1(0.5, 0.1, 0.4) and
x2(0.5, 0.3, 0.2). It is easy to verify that from (7) we obtain “the same” results, namely: the
normalized Euclidean distance:

eIFS(x0, x1) = 0.5((0.5− 0.5)2 + (0.2− 0.1)2 + (0.3− 0.4)2)
1
2 = 0.5(0.02)

1
2 (10)

and
eIFS(x0, x2) = 0.5((0.5− 0.5)2 + (0.2− 0.3)2 + (0.3− 0.2)2 = 0.5(0.02)

1
2 . (11)

The same situation occurs when we use (6), (8) or (9). Namely, we are not able to give a
difference between a distance x0 and x1 (10) on the one hand and between x0 and x2 (11) on the
other hand although x1 and x2 are different. So having different options, a distance is not always
able to show it.

It is easy to notice that not only the results of (10) and (11) are the same but also all the
components in the brackets are the same, i.e., the differences between the membership values,
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non-membership values, and hesitation margins are the same (i.e., 0, 0.1, 0.1) in both cases. So
even if we consider them as a triplet instead of a single value from (10) and/or (11), we are not able
to make any differences. The same situation occurs for our examples when using the Hamming
distance, the same is when we use the formulas with two parameters only (the drawbacks of the
approach were stressed in our previous papers).

The problem with “the same distances”, e.g., from the ideal element (1, 0, 0) representing the
best option) for quite different intuitionistic fuzzy elements representing different options, does
not boil down to the fact that we get the same value from the formulas. It is a problem but not the
only one.

When we pay attention to the components of the formulas (6), (7), or to be more precise, to the
meaning of the components, we see that we aggregate quite different quantities. The membership
values hold a meaning that contrasts significantly with that of the non-membership values and the
hesitation margins, each bearing its own distinct significance in decision-making. Nevertheless,
we aggregate all of these factors. An argument often presented is that the approach satisfies the
properties of a distance. However, is this justification valid when considering decision-making?
What implications does it hold for the interpretation of the results obtained?

Consider negotiations. Let the first opinion of an expert is like in the Example 1, i.e.,
x0(0.5, 0.2, 0.3), and two other elements representing two possible change of opinion are:
x1(0.5, 0.1, 0.4) and x2(0.5, 0.3, 0.2). The question is about which opinion is closer to the opinion
expressed by x0.

As it was shown by (10) and (11), distances do not give us a satisfactory answer. Also the
components of (10) and (11) examined separately, do not do it, too (they are the same). However,
opinions x1(0.5, 0.1, 0.4) and x2(0.5, 0.3, 0.2) are different.

To be more precise,

∆µ0,1 = µ(x0)− µ(x1) = 0.5− 0.5 = 0

∆ν0,1 = ν(x0)− ν(x1) = 0.2− 0.1 = 0.1

∆π0,1 = π(x0)− π(x1) = 0.3− 0.4 = −0.1

The above results show that the change of the membership did not occur (∆µ0,1 = 0), the
non-membership value decreased (∆ν0,1 > 0), and the hesitation margin increased (∆π0,1 < 0).

In the case of the second change (from x0 to x2) we have

∆µ0,2 = µ(x0)− µ(x2) = 0.5− 0.5 = 0

∆ν0,2 = ν(x0)− ν(x2) = 0.2− 0.3 = −0.1

∆π0,2 = π(x0)− π(x2) = 0.3− 0.2 = 0.1

From the above equations we can see that in the case of x2 the change of the membership did
not occur (∆µ0,2 = 0), non-membership value increased (∆ν0,1 < 0), and the hesitation margin
decreased (∆π0,1 > 0).

In other words, the changes went into different directions as far as the non-membership values,
and the hesitation margins are concerned. This fact is not visible when considering distances.
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Given the aforementioned points, we chose not to evaluate the options using a method that
relies on distance principles, such as, e.g., the TOPSIS method, which aims to identify the optimal
solution that is closest to the positive-ideal solution while being farthest from the negative-ideal
one.

Instead, we employ a different ranking method, elaborated upon in detail in Szmidt and
Kacprzyk [35, 48, 50]. Although the method has primarily been utilized successfully for attribute
selection in [48], it appears to serve as a convenient and transparent tool for decision-making
as well.

Having in mind the distinct interpretation of the three terms describing an element belonging
to an IFS we can characterize the options which are described by different attributes. As the
values of each attribute Ak(xi), k = 1, . . . , K for different options (xi) may be different, an
option can be described by average values of memberships (12), non-memberships (13), and
hesitation margins (14), that are obtained by the weight operator W (cf. [4]), i.e.,

µ(xi) =
1

K

K∑
l=1

µAl
(xi) , (12)

ν(xi) =
1

K

K∑
l=1

νAl
(xi) , (13)

π(xi) =
1

K

K∑
l=1

πAl
(xi) , (14)

where K is a number of the attributes.
Description of the options by (12)– (14) makes it possible to indicate the best option. To do it,

we apply the procedure of ranking the options (cf. [35, 48, 50]) which is reminded briefly below.

3.1 The procedure of ranking intuitionistic fuzzy options

The method of ranking intuitionistic fuzzy alternatives we use here, consists of two steps. In the
first step, Definition 1 is used.

Definition 1 ( [2, 3]). For two intuitionistic fuzzy alternatives x1(µ1, ν1) and x2(µ2, ν2), x1 ≤ x2

if
µ1 ≤ µ2 and ν1 ≥ ν2. (15)

If the conditions of Definition 1 are fulfilled, then we obtain an order which is well justified
and acceptable without any doubts.

When it is not possible to use Definition 1 because the assumptions are not fulfilled, an
approach that ranks higher the alternatives with bigger membership values and lower hesitation
values is applied. To be more precise, the following measure R (16) (cf. [35, 48, 50]) is applied:

R(x) = 0.5(1 + πx)lIFS(M,x), (16)
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where lIFS(M,x) is the Hamming distance (6) x from ideal positive alternative M(1, 0, 0). In
result we obtain:

lIFS(M,x) =
1

2
(|1− µx|+ |0− νx|+ |0− πx|) = 1− µx. (17)

Finally, (16) is given as:
R(x) = 0.5(1 + πx)(1− µx). (18)

Equation (18) expresses the “quality” of an alternative. The lower the value of R(x), (18), the
better the alternative. From (18) we conclude that for the best alternatives the amount of positive
information included µx is as big as possible, and the hesitation margin πx is as small as possible.

The above procedure was examined and compared with other approaches [48, 50]). Now we
will demonstrate how the procedure can be applied in group decision making.

Example 2. Assume there is one expert considering three alternatives. If the alternatives are
described by more than one attribute, we use (12)–(14). In effect, we obtain the alternatives
described as xi(µ, ν, π), i = 1, 2, 3:

x1(0.5, 0.1, 0.4)

x2(0.6, 0.2, 0.2)

x3(0.5, 0.2, 0.3)

Comparing x1 and x2 we can not use Definition 1 because the assumptions are not fulfilled
(µx1 < µx2 and νx1 < νx2).

From (18) we obtain that x2 is a better alternative as µx2 > µx1 and πx2 < πx1 .
Next we compare x2 and x3. We see that the non-membership values of x2 and x3 are the

same so we can use Definition 1. It means that x2 is again a better option (µx2 > µx3 ). In result
the expert will point out x2 as the best option.

When we have n experts, each of them points out an option which is the best in his/her
opinion. Having n options to consider, obtained from n experts, we apply the approach described
in Example 2.

If we wish to point out not only the best option but to order all of them, we remove the best
option found as above, and look for the next best option. Repeating the algorithm we can order
the options from the best one to the worst one.

An interesting area of research for extending the new model proposed in this paper would be,
for instance, the use of some elements of rough sets theory as a foundation framework for a group
decision making model of the class considered, along the lines of Nurmi and Kacprzyk [10]
and Nurmi, Kacprzyk and Fedrizzi [11]. Moreover, a larger class of OWA based aggregation
operators, cf. Kacprzyk, Yager and Merigo [8], would provide a deep insight and new solution
concepts.

4 Conclusions

We have presented a novel method of decision making, i.e., pointing out the best option considered.
The options are expressed via intuitionistic fuzzy elements. It means that we point out their pros,
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cons, and hesitation margins (lack of knowledge concerning pros, and cons). We do not compare
the options in pairs. The options can be characterized by several attributes. The best decision
(option) can be point out by one decision maker or by a group of them. The considered options
can be ranked from the best one to the worst one.

The approach is transparent, and easy to understand by decision makers. It is simple yet
powerful.
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