Title of paper:
|
Intuitionistic fuzzy hollow submodules
|
Author(s):
|
P. K. Sharma
|
Post Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
Gagandeep Kaur
|
Research Scholar, IKG PT University, Jalandhar, Punjab, India
|
taktogagan@gmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 2, pages 25–32
|
DOI:
|
https://doi.org/10.7546/nifs.2018.24.2.25-32
|
Download:
|
PDF (177 Kb Kb, File info)
|
Abstract:
|
In this paper, the notion of intuitionistic fuzzy hollow submodule of a module is defined. We attempt to investigate various properties of this module. A characterization of an intuitionistic fuzzy hollow module in terms of an intuitionistic fuzzy quotient modules is established. A relationship between a hollow submodule, and an indecomposable intuitionistic fuzzy submodule is also obtained. We also investigate the nature of equivalent conditions of intuitionistic fuzzy small submodules, and intuitionistic fuzzy hollow submodules.
|
Keywords:
|
Intuitionistic fuzzy small submodule, Intuitionistic fuzzy quotient module, Intuitionistic fuzzy indecomposable module, Intuitionistic fuzzy hollow submodule.
|
AMS Classification:
|
03F55, 16D10
|
References:
|
- Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg (1999).
- Basnet, D. K. (2002) Intuitionistic fuzzy essential submodule, Proceeding of the International Symposium on Mathematics and its Applications, 113–124.
- Biswas, R. (1989) Intuitionistic fuzzy subgroup, Mathematical Forum, X, 37–46.
- Bland Paul, E. Rings and their modules, published by the Deutsche Nationalbibliothek, Germany 2012, ISBN 978-3-11-025022-0.
- Davvaz, B., Dudek, W.A. & Jun, Y.B. (2006) Intuitionistic fuzzy Hv-submodules Information Science, 176, 285–300.
- Hur, K., Kang, H. W. & Song, H. K. Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J., 25(1), 19–41.
- Hur, K., Jang, S. Y. & Kang, H. W. (2005) Intuitionistic Fuzzy Ideals of a Ring, Journal of the Korea Society of Mathematical Education, Series B, 12(3), 193–209.
- John, P. P. & Isaac, P. (2012) IFSM’s of an R-Module – A Study, International Mathematical Forum, 19(7), 935–943.
- Rahman, S. & Saikia, H. K. (2012) Some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77(3), 369–383.
- Rahman, S. (2016) Fuzzy hollow submodules, Annals of Fuzzy Mathematics and Informatics, 12(5), 601–608.
- Sharma, P. K. (2013) (α,β)-Cut of intuitionistic fuzzy modules-II, Int. J. of Mathematical Sciences and Applications, 3(1), 11–17.
- Sharma, P. K. & Kaur, Gagandeep (2016) Intuitionistic fuzzy superfluous module, Notes on Intuitionistic Fuzzy Sets, 22(3), 34–46.
- Sharma , P. K. & Kaur, Gagandeep (2017) Intuitionistic fuzzy cosmall submodule, CiiT International Journal of Fuzzy System, 9(9), 185–188.
- Wisbaure, R. (1991) Foundation of Module and Ring Theory, Gordon and Breach: Philadelphia.
- Zadeh, L. A. (1965) Fuzzy Sets, Inform. Control., 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|