As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Intuitionistic fuzzy Voronoi diagrams – Definition and properties

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search


shortcut
http://ifigenia.org/wiki/issue:nifs/10/4/56-60
Title of paper: Intuitionistic fuzzy Voronoi diagrams – Definition and properties
Author(s):
Lyudmila Todorova
Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad.G.Bonchev Str., B1.105, Sofia, Bulgaria
lpt@clbme.bas.bg
Anton Antonov
Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad.G.Bonchev Str., B1.105, Sofia, Bulgaria
a.antonov@clbme.bas.bg
Stefan Hadjitodorov
Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad.G.Bonchev Str., B1.105, Sofia, Bulgaria
sthadj@argo.bas.bg
Presented at: Eighth International Conference on Intuitionistic Fuzzy Sets, Varna, 20-21 June 2004
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 10 (2004) Number 4, pages 56-60
Download:  PDF (4213  Kb, File info)
Abstract: It is defined modification of Voronoi diagrams named intuitionistic fuzzy Voronoi diagrams (IFVD). Properties of IF WD are examined. The base of geometrical properties of IF VD are placed.
Keywords: intuitionistic fuzzy sets, object-reflecting infrared sensor, mobile robots’ control, object localization
References:
  1. Voronoi, G.M.. Nouvelles applications des paramétres continus a la théorie des formes quadratiques. deuxiéme Mémoire: Recherches sur les parallélloédres primitifs. J. Reine Angew. Math., 134:198—287, 1908.
  2. Aurenhammer, F. Voronoi diagrams a survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345-405, Sept. 1991.
  3. McAllister, M., D. Kirkpatrick, and J. Snoeyink, A compact piccewisc-lincar Voronoi diagram for convex sites in the plane, Discrete & Computational Geometry, 15 (1996), 73--105.
  4. Barequet, G., M. Dickerson, and M.T. Goodrich, Voronoi Diagrams for Polygon-Offset Distance Functions, Proc. 5th Workshop on Algorithms and Data Structures, Halifax, Nova Scotia, Canada, Lecture Notes in Computer Science, 1272, Springer-Verlag, pp 200-209, 1997.
  5. Lee, D.T., On k-nearest neighbors Voronoi diagrams in the plane. /EEE Transactions on Computers, C-31: pp 478-487, 1982.
  6. Kuncheva, L., L. Todorova. Prototype Selection for an RBF Network by a Genetic Algorithm. Proceedings of the international ICSC Symposia on Intelligent Industrial Automation (IITA’96) and Soft Computing (SOCO’96), (P. Anderson and K. Warwick, Eds.), Reading, U.K., March 26-28, pp. B100 — B106, 1996.
  7. Todorova, L. An intuitionistic fuzzy version of the nearest prototype classification method, based on a Voronoi’s diagrams.
  8. Atanassov K. Intuitionistic Fuzzy Sets. Heidelberg: Physica-Verlag, 1999.
  9. Gibbons, A.. Algorithmic Graph Theory. Cambridge Universite Press, Cambridge, 1985.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.