As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Intercriteria analysis of countries in transition from factor-driven to efficiency-driven economy

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/2/84-96
Title of paper: Intercriteria analysis of countries in transition from factor-driven to efficiency-driven economy
Author(s):
Vassia Atanassova
Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, Bioinformatics and Mathematical Modelling Department, Sofia, Bulgaria
vassia.atanassova@gmail.com
Lyubka Doukovska
Bulgarian Academy of Sciences, Institute of Information and Communication Technologies, Intelligent Systems Department, Sofia, Bulgaria
doukovska@iit.bas.bg
Maciej Krawczak
Polish Academy of Sciences, Systems Research Institute, Warsaw, Poland
krawczak@ibspan.waw.pl
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 2, pages 84–96
DOI: https://doi.org/10.7546/nifs.2018.24.2.84-96
Download:  PDF (174 Kb  Kb, File info)
Abstract: The intuitionistic fuzzy sets-based method of InterCriteria Analysis is applied here to datasets retrieved from the World Economic Forum’s Global Competitiveness Reports (GCRs) from years 2013–2014 to 2017–2018 containingglobal economies whose stage of development is in the transition from factor-drivento efficiency-driven economy. These data are analysed in search of correlations between the twelve pillars of competitiveness and certain findings are outlined and commented.
Keywords: InterCriteria Analysis, Intuitionistic fuzzy sets,Factor-driven economy, Efficiency-driven economy, Competitiveness, Economic development, Knowledge discovery.
AMS Classification: 03E72
References:
  1. Atanassov, K., Andonov, V., Krawczak, M. (2017)On intuitionistic fuzzy modes, medians and mean elements. Notes on Intuitionistic Fuzzy Sets, 23(3), 17–22.
  2. Atanassov, K., Atanassova, V., Szmidt, E., & Kacprzyk, J. (2018) Intuitionistic Fuzzy Interpretations of Some Formulas for Estimation of Preference Degree. In: Soft Computing Applications for Group Decision-making and Consensus Modeling, Springer, Studies in Fuzziness and Soft Computing, Cham, Vol. 357, 153–161.
  3. Atanassov, K., Mavrov, D., & Atanassova, V. (2014) InterCriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuition-istic fuzzy sets. Issues in Intuitionistic Fuzzy Sets and GeneralizedNets, 11, 1–8.
  4. Atanassov, K., Szmidt, E., & Kacprzyk, J. (2013) On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 19(3), 1–13.
  5. Atanassov, K., Szmidt, E., Kacprzyk, J., & Atanassova, V. (2017) An approach to a con-structive simplification of multiagent multicriteria decision making problems via inter-criteria analysis. Comptes rendus de l’Academie bulgare des Sciences, 70(8), 1147–1156.
  6. Atanassova, V. (2015) Interpretation in the intuitionistic fuzzy triangle of the results, obtained by the InterCriteria Analysis, Proc. of 16th World Congress of IFSA, 9th Conf. of EUSFLAT, 30. 06-03. 07. 2015, Gijon, Spain, 2015, 1369–1374.
  7. Atanassova V., Doukovska, L., Atanassov, K., & Mavrov, D. (2014) InterCriteria decision making approach to EU member states competitiveness analysis, Proc. of the International Symposium on Business Modeling and Software Design – BMSD’14, 24-26 June 2014, Luxembourg, Grand Duchy of Luxembourg, 289–294.
  8. Atanassova, V., Doukovska, L., Kacprzyk, A., Sotirova, E., Radeva, I., & Vassilev, P. InterCriteria analysis of the Global Competitiveness Reports: from efficiency- to inno-vation-driven economies. Journal of Multivalued Logic and Soft Computing. (accepted).
  9. Atanassova, V., Doukovska, L., Karastoyanov, D., & Capkovic, F. (2014) InterCriteria decision making approach to EU member states competitiveness analysis: Trend analysis. P. Angelov et al. (eds.), Proc. of IEEE Intelligent Systems’2014, Advances in Intelligent Systems and Computing, 322, Springer, 107–115.
  10. Atanassova, V., Doukovska, L., Mavrov, D., & Atanassov, K. (2014) InterCriteria decision making approach to EU member states competitiveness analysis: Temporal and threshold analysis. P. Angelov et al. (eds.), Proc. of IEEE Intelligent Systems’2014, Advances in Intelligent Systems and Computing, 322, Springer, 95–106.
  11. Doukovska, L., Atanassova, V., Sotirova, E., &Traneva, V. (2018) Knowledge discovery from the Global Competitiveness Reports: Intercriteria analysis of the efficiency-driven economies. Notes on Intuitionistic Fuzzy Sets, 24(3) (in print).
  12. Doukovska, L., Atanassova, V., Sotirova, E., Vardeva, I., & Radeva, I. (2019) Defining Consonance Thresholds in InterCriteria Analysis: AnOverview. In: Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, Springer, Studies in Computational Intelligence, Vol. 757, DOI: 10.1007/978-3-319-78931-6_11 (in print).
  13. Ikonomov, N., Vassilev, P., & Roeva, O. (2018)ICrAData – Software for InterCriteria Analysis, Int J Bioautomation, 22(1), 1–10.
  14. Mavrov, D. (2015) Software for InterCriteria Analysis: Implementation of the main algorithm, Notes on Intuitionistic Fuzzy Sets, 21(2), 77–86.
  15. Mavrov, D. (2015–2016) Software for InterCriteria Analysis: Working with the results. Annual of “Informatics” Section, Union of Scientists in Bulgaria, 8, 37–44.
  16. Roeva, O., Vassilev, P., Angelova, M., Su, J.,& Pencheva, T. (2016) Comparison of different algorithms for intercriteria relations calculation. Proc. of IEEE 8th Int. Conf. on Intelligent Systems, Sofia, 4-6 September 2016, 567–572.
  17. Roeva, O., P Vassilev, P., & Chountas, P. (2017) Application of Topological Operators over Data from InterCriteria Analysis, Lecture Notes on Artificial Intelligence, Vol. 10333, FQAS 2017, 215–225.
  18. Schwab, K. (2013) The Global Competitiveness Report 2013–2014. World Economic Forum, Geneva, ISBN-13: 978-92-95044-73-9.
  19. Schwab, K. (2014) The Global Competitiveness Report 2014–2015. World Economic Forum, Geneva, ISBN-13: 978-92-95044-98-2.
  20. Schwab, K. (2015) The Global Competitiveness Report 2015–2016. World Economic Forum, Geneva, ISBN-13: 978-92-95044-99-9.
  21. Schwab, K. (2016) The Global Competitiveness Report 2016–2017. World Economic Forum, Geneva, ISBN-13: 978-1-944835-04-0.
  22. Schwab, K. (2017) The Global Competitiveness Report 2017–2018. World Economic Forum, Geneva, ISBN-13: 978-1-944835-11-8.
  23. Todorova, L., Vassilev, P., & Surchev, J. (2016) Using Phi Coefficient to Interpret Results Obtained by InterCriteria Analysis, In: Novel Developments in Uncertainty Representation and Processing,AISC, 401, Springer, 231–239.
  24. Zoteva, D., & Roeva, O. (2018) InterCriteria Analysis results based on different number of objects. Notes on Intuitionistic Fuzzy Sets, 24(1), 110–119.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.