As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:InterCriteria analysis of genetic algorithm parameters in parameter identification

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/21/2/99-110
Title of paper: InterCriteria analysis of genetic algorithm parameters in parameter identification
Author(s):
Tania Pencheva
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
tania.pencheva@biomed.bas.bg
Maria Angelova
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
maria.angelova@biomed.bas.bg
Vassia Atanassova
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
vassia.atanassova@gmail.com
Olympia Roeva
Bioinformatics and Mathematical Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
olympia@biomed.bas.bg
Presented at: 19th International Conference on Intuitionistic Fuzzy Sets, 4–6 June 2015, Burgas, Bulgaria
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 21, 2015, Number 2, pages 99—110
Download:  PDF (194  Kb, File info)
Abstract: An application of InterCriteria Analysis (ICA) – recently proposed approach for multicriteria decision support – is here presented. The apparata of Index Matrices and Intuitionistic Fuzzy Sets are in the grounds of ICA. In this investigation, ICA is applied to examine the influences of genetic algorithms parameters during the model parameter identification of E. coli MC4110 and S. cerevisiae fermentation processes. The impact of two of the main genetic algorithms parameters, namely number of individuals and number of generations, is here studied. The obtained results after ICA application are discussed towards convergence time and model accuracy. Some conclusions about existing relations and dependencies between genetic algorithms parameters, from one side, and fermentation process model parameters from the other side, are derived.
Keywords: InterCriteria analysis, Intuitionistic fuzzy sets, Genetic algorithms, Fermentation process, E. coli, S. cerevisiae.
AMS Classification: 03E72.
References:
  1. Angelova, M., Modified Genetic Algorithms and Intuitionistic Fuzzy Logic for Parameter Identification of Fed-batch Cultivation Model, PhD Thesis, Sofia, 2014. (in Bulgarian)
  2. Atanassov, K., On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  3. Atanassov, K., D. Mavrov, V. Atanassova, Intercriteria Decision Making: A New Approach for Multicriteria Decision Making, Based on Index Matrices and Intuitionistic Fuzzy Sets, Issues in IFSs and GNs, Vol. 11, 2014, 1–8.
  4. Atanassov, K., E. Szmidt, J. Kacprzyk, On intuitionistic fuzzy pairs, Notes on Intuitionistic Fuzzy Sets, Vol. 19, 2013, No. 3, 1–13.
  5. Atanassov, K., Generalized Index Matrices, Comptes rendus de l’Academie Bulgare des Sciences, Vol. 40, 1987, No. 11, 15–18.
  6. Atanassov, K., On Index Matrices, Part 1: Standard Cases, Advanced Studies in Contemporary Mathematics Vol. 20, 2010, No. 2, 291–302.
  7. Atanassov, K., On Index Matrices, Part 2: Intuitionistic Fuzzy Case, Proceedings of the Jangjeon Mathematical Society, Vol. 13, 2010, No. 2, 121–126.
  8. Atanassova, V., D. Mavrov, L. Doukovska, K. Atanassov, Discussion on the Threshold Values in the InterCriteria Decision Making Approach, Notes on Intuitionistic Fuzzy Sets, Vol. 20, 2014, No. 2, 94–99.
  9. Atanassova, V., L. Doukovska, K. Atanassov, D. Mavrov, Intercriteria Decision Making Approach to EU Member States Competitiveness Analysis, In: Shishkov, B. (ed.) Proc. of the International Symposium on Business Modeling and Software Design - BMSD’14, 2014, 289–294.
  10. Atanassova, V., L. Doukovska, D. Karastoyanov, F. Capkovic, InterCriteria Decision Making Approach to EU Member States Competitiveness Analysis: Trend Analysis, In: Angelov, P., et al. (eds.) Intelligent Systems’2014, Advances in Intelligent Systems and Computing, Vol. 322, 2014, 107–115.
  11. Bastin, G., D. Dochain, On-line Estimation and Adaptive Control of Bioreactors, Elsevier Scientific Publications, 1991.
  12. Boussaid, I., J. Lepagnot, P. Siarry, A Survey on Optimization Metaheuristics, Information Sciences Vol. 237, 2013, 82–117.
  13. Dickinson, R. J., M. Schweizer, Metabolism and Molecular Physiology of Saccharomyces cerevisiae, 2nd Edition, CRC Press, 2004.
  14. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Longman, London, 2006.
  15. Matsuoka, Y., K. Shimizu, Importance of Understanding the Main Metabolic Regulation in Response to the Specific Pathway Mutation for Metabolic Engineering of Escherichia coli, Vol. 3, 2012, No. 4, e201210018, http://dx.doi.org/10.5936/csbj.201210018.
  16. Obitko, M. (2005). Genetic Algorithms, available at http://www.obitko.com/tutorials/genetic-algorithms/.
  17. Pencheva, T., O. Roeva, I. Hristozov, Functional State Approach to Fermentation Processes Modelling, Prof. Marin Drinov Academic Publishing House, Sofia, 2006.
  18. Roeva, O., T. Pencheva, B. Hitzmann, St. Tzonkov, A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation. International Journal Bioautomation, Vol. 1, 2004, 30–41.
  19. Roeva, O. (ed.), Real-world Application of Genetic Algorithms, InTech, 2012.
  20. Roeva, O., S. Fidanova, M. Paprzycki, Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling, Recent Advances in Computational Optimization, Studies in Computational Intelligence, Vol. 580, 2015, 107–120.
  21. Roeva O., Genetic Algorithm and Firefly Algorithm Hybrid Schemes for Cultivation Processes Modelling, In: Transactions on Computational Collective Intelligence XVII, R. Kowalczyk, A. Fred, F. Joaquim (Eds.), series Lecture Notes in Computer Science, Springer, Vol. 8790, 2014, 196–211.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.