As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Integral equations with pentagonal intuitionistic fuzzy numbers

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/3/40-52
Title of paper: Integral equations with pentagonal intuitionistic fuzzy numbers
Author(s):
Sankar Prasad Mondal
Department of Natural Science, Maulana Abul Kalam Azad University of Technology, West, Bengal, Haringhata-741249, Nadia, West Bengal, India
sankar.res07@gmail.com
Manimohan Mandal
Department of Mathematics, Midnapore College (Autonomous), Midnapore, West Midnapore-721101, West Bengal, India
Animesh Mahata
Department of Mathematics, Netaji Subhash Engineering College, Techno City, Garia, Kolkata, 700152, West Bengal, India
Tapan Kumar Roy
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 24, 2018, Number 3, pages 40—52
DOI: https://doi.org/10.7546/nifs.2018.24.3.40-52
Download:  PDF (194  Kb, File info)
Abstract: The paper presents an adaptation of pentagonal intuitionistic fuzzy numbers. The arithmetic operation of pentagonal intuitionistic fuzzy number is addressed here. Demonstration of a pentagonal intuitionistic fuzzy solution of intuitionistic fuzzy integral equation is carried out with the said numbers. Additionally, an illustrative example is also undertaken with a graph and a table to attain usefulness of the proposed concept.
Keywords: Pentagonal intuitionistic fuzzy number, Intuitionistic fuzzy integral equation.
AMS Classification: 03E72
References:
  1. Allahviranloo, T., & Hashemzehi, S. (2008) The Homotopy Perturbation Method for Fuzzy Fredholm Integral Equations, Journal of Applied Mathematics, Islamic Azad University of Lahijan, 5(19), 1–12.
  2. Anitha, P. & Parvathi, P. (2016) An Inventory Model with Stock Dependent Demand, two parameter Weibull Distribution Deterioration in a fuzzy environment, 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 1–8.
  3. Annie Christi, M. S. & Kasthuri, B. (2016) Transportation Problem with Pentagonal Intuitionistic Fuzzy Numbers Solved Using Ranking Technique and Russell’s Method, Int.Journal of Engineering Research and Applications, 6 (2), 82–86.
  4. Atanassov, K. (1983) Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  5. Atanassov, K.T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), 87–96.
  6. Chang, S. S. L., & Zadeh, L. A. (1972) On fuzzy mappings and control, IEEE Trans. Syst. Man Cybernet, 2, 30–34.
  7. Dhanamand, K. & Parimaldevi, M. (2016) Cost analysis on a probabilistic multi objective-multi item inventory model using pentagonal fuzzy number, The Global Journal of Applied Mathematics & Mathematical Sciences, 9(2), 151–163.
  8. Diamond, P. (2002) Theory and Applications of Fuzzy Volterra Integral Equations, IEEE Transactions of Fuzzy Systems, 10 (1), 97–102.
  9. Diamond, P., & Kloeden, P. (1994) Metric Space of Fuzzy Sets, World Scientific, Singapore.
  10. Dubois, D., & Prade, H. (1978) Operations on fuzzy numbers, Internat. J. Systems Sci., 9, 613–626.
  11. Ezzati, R. & Ziari, S. (2013) Numerical Solution of Two-Dimensional Fuzzy Fredholm Integral Equations of the Second Kind Using Fuzzy Bivariate Bernstein Polynomials, International Journal of Fuzzy Systems, 15 (1), 84–89.
  12. Goetschel, R. & Voxman, W. (1986) Elementary calculus, Fuzzy Sets and Systems 18, 31–43.
  13. Helen, R. & Uma, G. (2015) A new operation and ranking on pentagon fuzzy numbers, International Journal of Mathematical Sciences & Applications, 5(2), 341–346.
  14. Kaleva, O. (1987) Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301–317.
  15. Mondal, S. P., & Roy, T. K. (2014) First order homogeneous ordinary differential equation with initial value as triangular intuitionistic fuzzy number, Journal of Uncertainty in Mathematics Science, Vol. 2014, 1–17.
  16. Mondal, S. P., & Roy, T. K. (2014) Non-linear arithmetic operation on generalized triangular intuitionistic fuzzy numbers, Notes on Intuitionistic Fuzzy Sets, 20 (1), 9–19.
  17. Mondal, S. P., & Roy, T. K. (2015) First Order Non Homogeneous Ordinary Differential Equation with Initial Value as Triangular Intuitionistic Fuzzy Number, Journal of Uncertain Systems, 9 (4), 274–285.
  18. Mondal, S. P., & Roy, T. K. (2015) Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit, TWMS J. App. Eng. Math. 5 (1), 30–45.
  19. Mondal, S. P., & Roy, T. K. (2015) Second order linear differential equations with generalized trapezoidal intuitionistic Fuzzy boundary value, Journal of Linear and Topological Algebra, 4(2), 115–129.
  20. Mondal, S. P., & Roy, T. K. (2015) System of Differential Equation with Initial Value as Triangular Intuitionistic Fuzzy Number and its Application, Int. J. Appl. Comput. Math, 1, 449–474.
  21. Mondal, S. P., Vishwakarma, D. K., & Saha, A. K (2017) Intuitionistic Fuzzy Difference Equation, In: Emerging Research on Applied Fuzzy Sets and Intuitionistic Fuzzy Matrices, IGI Global, 112–131.
  22. Panda, A. & Pal, M. (2015) A study on pentagonal fuzzy number and its corresponding matrices, Pacific Science Review B: Humanities and Social Sciences, 1, 131–139.
  23. Pathinathan, T. & Ponnivalavan, K. (2015) Reverse order Triangular, Trapezoidal and Pentagonal Fuzzy Numbers, Annals of Pure and Applied Mathematics, 9(1), 107–117.
  24. Ponnivalavan, K. & Pathinathan, T. (2015) Intuitionistic pentagonal fuzzy numbers, ARPN Journal of Engineering and Applied Sciences, 10(12), 5446–5450.
  25. Rouhparvar, H., Allahviranloo, T., & Abbasbandy, S. (2009) Existence and uniqueness of fuzzy solution for linear Volterra fuzzy integral equations, proved by adomian decompositions method, ROMAI J., 5 (2), 153–161.
  26. Siji, S. & Selva Kumari, K. (2016) An Approach for Solving Network Problem with Pentagonal Intuitionistic Fuzzy Numbers Using Ranking Technique, Middle-East Journal of Scientific Research, 24 (9), 2977–2980.
  27. Vigin Raj, A. & Karthik, S. (2016) Application of Pentagonal Fuzzy Number in Neural Network, International Journal of Mathematics and its Applications, 4(4), 149–154.
  28. Zadeh, L.A.(1965) Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.