| Title of paper:
|
Group action on intuitionistic fuzzy ideals of Γ-ring
|
| Author(s):
|
|
| Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 2, pages 139–153
|
| DOI:
|
https://doi.org/10.7546/nifs.2025.31.2.139-153
|
| Download:
|
PDF (268 Kb, File info)
|
| Abstract:
|
Group actions serve as a powerful tool for exploring the symmetry and automorphism properties of rings. In this paper, we examine group actions on intuitionistic fuzzy ideals (IFIs) within a Γ-ring [math]\displaystyle{ \mathcal{M} }[/math]. We introduce the concept of the intrinsic product of IFIs in [math]\displaystyle{ \mathcal{M} }[/math] and explore various properties of intuitionistic fuzzy prime ideals under the influence of group actions. Further, we propose the notion of an intuitionistic fuzzy [math]\displaystyle{ \mathcal{G} }[/math]-prime ideal in [math]\displaystyle{ \mathcal{M} }[/math]. We demonstrate that for an IFI [math]\displaystyle{ A }[/math] of [math]\displaystyle{ \mathcal{M} }[/math], the ideal [math]\displaystyle{ A^{\mathcal{G}} = \bigcap_{g\in \mathcal{G}}A^{g} }[/math] represents the largest [math]\displaystyle{ \mathcal{G} }[/math]-invariant IFI contained within [math]\displaystyle{ A }[/math]. Additionally, we establish that the [math]\displaystyle{ \mathcal{G} }[/math]-primeness of [math]\displaystyle{ A^{\mathcal{G}} }[/math] is uniquely characterized by the [math]\displaystyle{ \mathcal{G} }[/math]-primeness of [math]\displaystyle{ A }[/math]. Lastly, we examine the behavior of intuitionistic fuzzy [math]\displaystyle{ \mathcal{G} }[/math]-prime ideals of [math]\displaystyle{ \mathcal{M} }[/math] under a [math]\displaystyle{ \mathcal{G} }[/math]-homomorphism.
|
| Keywords:
|
Γ-ring, Intuitionistic fuzzy prime ideal, [math]\displaystyle{ \mathcal{G} }[/math]-invariant intuitionistic fuzzy ideals, [math]\displaystyle{ \mathcal{G} }[/math]-prime intuitionistic fuzzy ideals, [math]\displaystyle{ \mathcal{G} }[/math]-homomorphism.
|
| AMS Classification:
|
03F55, 13A15, 13A50; 16W22, 16Y80.
|
| References:
|
- Atanassov, K. T. (1983). Intuitionistic fuzzy sets. In: Sgurev, V. (Ed.). VII ITKR’s Session. Deposited in: Central Science and Technology Library of the Bulgarian Academy of Sci, Sofia. Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
- Atanassov, K. T. (1986). Intuitionistic fuzzy Sets. Fuzzy Sets and Systemts, 20(1), 87–96.
- Barnes, W. E. (1966). On the Γ-rings of Nobusawa. Pacific Journal of Mathematics, 18, 411–422.
- Kim, K. H., Jun, Y. B., & Ozturk, M. A. (2001). Intuitionistic fuzzy Γ-ideals of Γ-rings. Scienctiae Mathematicae Japonicae Online, 4, 431–440.
- Kyuno, S. (1978). On prime gamma rings. Pacific Journal of Mathematics, 75(1), 185–190.
- Kyuno, S. (1982). Prime ideals in gamma rings. Pacific Journal of Mathematics, 98(2), 375–379.
- Lee, D. S., & Park, C. H. (2006). Group action on intuitionistic fuzzy ideals of rings. East Asian Mathematical Journal, 22(2), 239–248.
- Lorenz, M., & Passman, D. S. (1979). Prime ideals in crossed products of finite groups. Israel Journal of Mathematics, 32(2), 89–132.
- Montgomery, S. (1980). Fixed Rings of Finite Automorphism Groups of Associative Rings. Springer Berlin, Heidelberg.
- Nobusawa, N. (1964). On a generalization of the ring theory. Osaka Journal of Mathematics, 1(1), 81–89.
- Palaniappan, N., & Ramachandran, M. (2010). A note on characterization of intuitionistic fuzzy ideals in Γ-rings. International Mathematical Forum, 5(52), 2553–2562.
- Palaniappan, N., & Ramachandran, M. (2011). Intuitionistic fuzzy prime ideals in Γ-rings. International Journal of Fuzzy Mathematics and Systems, 1(2), 141–153.
- Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2010). Characterization of intuitionistic fuzzy ideals of Γ-rings. Applied Mathematical Sciences, 4(23), 1107–1117.
- Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of intuitionistic fuzzy ideals of Γ-rings. Thai Journal of Mathematics, 9(2), 305–318.
- Paul, R. (2015). On various types of ideals of Γ-rings and the corresponding operator rings. International Journal of Engineering Research and Applications, 5(8) 95–98.
- Sharma, P. K., & Lata, H. (2022). Intuitionistic fuzzy characteristic ideals of a Γ-ring. South East Asian Journal of Mathematics and Mathematical Sciences, 18(1), 49–70.
- Sharma, P. K., Lata, H., & Bharadwaj, N. (2022). On intuitionistic fuzzy structure space on Γ-ring. Creative Mathematics and Informatics, 31(2), 215–228.
- Sharma, P. K., Lata, H., & Bhardwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of Γ-ring. Creative Mathematics and Informatics, 32(1), 69–86.
- Sharma, P. K., Lata, H., & Bharadwaj, N. (2024). Decomposition of intuitionistic fuzzy primary ideal of Γ-ring. Creative Mathematics and Informatics, 33(1), 65–75.
- Warsi, Z. K. (1978). On decomposition of primary ideals of Γ-rings. Indian Journal of Pure and Applied Mathematics, 9(9), 912–917.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353
|
| Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|