As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Group action on intuitionistic fuzzy ideals of Γ-ring

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/2/139-153
Title of paper: Group action on intuitionistic fuzzy ideals of Γ-ring
Author(s):
Poonam Kumar Sharma     0000-0001-5463-8665
P. G. Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 2, pages 139–153
DOI: https://doi.org/10.7546/nifs.2025.31.2.139-153
Download:  PDF (268  Kb, File info)
Abstract: Group actions serve as a powerful tool for exploring the symmetry and automorphism properties of rings. In this paper, we examine group actions on intuitionistic fuzzy ideals (IFIs) within a Γ-ring [math]\displaystyle{ \mathcal{M} }[/math]. We introduce the concept of the intrinsic product of IFIs in [math]\displaystyle{ \mathcal{M} }[/math] and explore various properties of intuitionistic fuzzy prime ideals under the influence of group actions. Further, we propose the notion of an intuitionistic fuzzy [math]\displaystyle{ \mathcal{G} }[/math]-prime ideal in [math]\displaystyle{ \mathcal{M} }[/math]. We demonstrate that for an IFI [math]\displaystyle{ A }[/math] of [math]\displaystyle{ \mathcal{M} }[/math], the ideal [math]\displaystyle{ A^{\mathcal{G}} = \bigcap_{g\in \mathcal{G}}A^{g} }[/math] represents the largest [math]\displaystyle{ \mathcal{G} }[/math]-invariant IFI contained within [math]\displaystyle{ A }[/math]. Additionally, we establish that the [math]\displaystyle{ \mathcal{G} }[/math]-primeness of [math]\displaystyle{ A^{\mathcal{G}} }[/math] is uniquely characterized by the [math]\displaystyle{ \mathcal{G} }[/math]-primeness of [math]\displaystyle{ A }[/math]. Lastly, we examine the behavior of intuitionistic fuzzy [math]\displaystyle{ \mathcal{G} }[/math]-prime ideals of [math]\displaystyle{ \mathcal{M} }[/math] under a [math]\displaystyle{ \mathcal{G} }[/math]-homomorphism.
Keywords: Γ-ring, Intuitionistic fuzzy prime ideal, [math]\displaystyle{ \mathcal{G} }[/math]-invariant intuitionistic fuzzy ideals, [math]\displaystyle{ \mathcal{G} }[/math]-prime intuitionistic fuzzy ideals, [math]\displaystyle{ \mathcal{G} }[/math]-homomorphism.
AMS Classification: 03F55, 13A15, 13A50; 16W22, 16Y80.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. In: Sgurev, V. (Ed.). VII ITKR’s Session. Deposited in: Central Science and Technology Library of the Bulgarian Academy of Sci, Sofia. Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy Sets. Fuzzy Sets and Systemts, 20(1), 87–96.
  3. Barnes, W. E. (1966). On the Γ-rings of Nobusawa. Pacific Journal of Mathematics, 18, 411–422.
  4. Kim, K. H., Jun, Y. B., & Ozturk, M. A. (2001). Intuitionistic fuzzy Γ-ideals of Γ-rings. Scienctiae Mathematicae Japonicae Online, 4, 431–440.
  5. Kyuno, S. (1978). On prime gamma rings. Pacific Journal of Mathematics, 75(1), 185–190.
  6. Kyuno, S. (1982). Prime ideals in gamma rings. Pacific Journal of Mathematics, 98(2), 375–379.
  7. Lee, D. S., & Park, C. H. (2006). Group action on intuitionistic fuzzy ideals of rings. East Asian Mathematical Journal, 22(2), 239–248.
  8. Lorenz, M., & Passman, D. S. (1979). Prime ideals in crossed products of finite groups. Israel Journal of Mathematics, 32(2), 89–132.
  9. Montgomery, S. (1980). Fixed Rings of Finite Automorphism Groups of Associative Rings. Springer Berlin, Heidelberg.
  10. Nobusawa, N. (1964). On a generalization of the ring theory. Osaka Journal of Mathematics, 1(1), 81–89.
  11. Palaniappan, N., & Ramachandran, M. (2010). A note on characterization of intuitionistic fuzzy ideals in Γ-rings. International Mathematical Forum, 5(52), 2553–2562.
  12. Palaniappan, N., & Ramachandran, M. (2011). Intuitionistic fuzzy prime ideals in Γ-rings. International Journal of Fuzzy Mathematics and Systems, 1(2), 141–153.
  13. Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2010). Characterization of intuitionistic fuzzy ideals of Γ-rings. Applied Mathematical Sciences, 4(23), 1107–1117.
  14. Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of intuitionistic fuzzy ideals of Γ-rings. Thai Journal of Mathematics, 9(2), 305–318.
  15. Paul, R. (2015). On various types of ideals of Γ-rings and the corresponding operator rings. International Journal of Engineering Research and Applications, 5(8) 95–98.
  16. Sharma, P. K., & Lata, H. (2022). Intuitionistic fuzzy characteristic ideals of a Γ-ring. South East Asian Journal of Mathematics and Mathematical Sciences, 18(1), 49–70.
  17. Sharma, P. K., Lata, H., & Bharadwaj, N. (2022). On intuitionistic fuzzy structure space on Γ-ring. Creative Mathematics and Informatics, 31(2), 215–228.
  18. Sharma, P. K., Lata, H., & Bhardwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of Γ-ring. Creative Mathematics and Informatics, 32(1), 69–86.
  19. Sharma, P. K., Lata, H., & Bharadwaj, N. (2024). Decomposition of intuitionistic fuzzy primary ideal of Γ-ring. Creative Mathematics and Informatics, 33(1), 65–75.
  20. Warsi, Z. K. (1978). On decomposition of primary ideals of Γ-rings. Indian Journal of Pure and Applied Mathematics, 9(9), 912–917.
  21. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.