Notes on Intuitionistic Fuzzy Sets Print ISSN 1310-4926, Online ISSN 2367-8283

2025, Volume 31, Number 2, 139-153

DOI: 10.7546/nifs.2025.31.2.139-153

Group action on intuitionistic fuzzy ideals of Γ -ring

Poonam Kumar Sharma[®]

Post-Graduate Department of Mathematics, D.A.V. College Jalandhar, Punjab, India

e-mail: pksharma@davjalandhar.com

Received: 31 January 2025 Revised: 11 May 2025 Accepted: 19 May 2025 Online First: 22 May 2025

Abstract: Group actions serve as a powerful tool for exploring the symmetry and automorphism properties of rings. In this paper, we examine group actions on intuitionistic fuzzy ideals (IFIs) within a Γ -ring \mathcal{M} . We introduce the concept of the intrinsic product of IFIs in \mathcal{M} and explore various properties of intuitionistic fuzzy prime ideals under the influence of group actions. Further, we propose the notion of an intuitionistic fuzzy \mathcal{G} -prime ideal in \mathcal{M} . We demonstrate that for an IFI A of \mathcal{M} , the ideal $A^{\mathcal{G}} = \bigcap_{g \in \mathcal{G}} A^g$ represents the largest \mathcal{G} -invariant IFI contained within A. Additionally, we establish that the \mathcal{G} -primeness of $A^{\mathcal{G}}$ is uniquely characterized by the \mathcal{G} -primeness of A. Lastly, we examine the behavior of intuitionistic fuzzy \mathcal{G} -prime ideals of \mathcal{M} under a \mathcal{G} -homomorphism.

Keywords: Γ -ring, Intuitionistic fuzzy prime ideal, \mathcal{G} -invariant intuitionistic fuzzy ideals, \mathcal{G} -prime intuitionistic fuzzy ideals, \mathcal{G} -homomorphism.

2020 Mathematics Subject Classification: 03F55, 13A15, 13A50; 16W22, 16Y80.

1 Introduction

Algebraic structures form a cornerstone of modern mathematics, with wide-ranging applications in fields such as theoretical physics, computer science, control engineering, information theory, and coding theory. Among these, the theory of Γ -rings introduced by Nobusawa [10] as a natural generalization of classical ring theory has emerged as a significant area of study. The class of

Copyright © 2025 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

 Γ -rings includes all rings as well as Hestenes ternary rings, thereby offering a broader algebraic framework. Barnes [3] later refined Nobusawa's definition by slightly relaxing its conditions, leading to a more flexible theoretical foundation. Since then, extensive research has been carried out to develop and expand the theory of Γ -rings in the senses of both Nobusawa and Barnes. These efforts have led to meaningful generalizations of classical results in ring theory. Notable contributions include structural investigations by Barnes [3] and Kyuno [5, 6], Warsi's work on the decomposition of primary ideals [20], and Paul's study of various Γ -ideal types and their corresponding operator rings [15].

The study of group actions on rings led to the establishment of the Galois theory for rings. Lorenz and Passman [8]. Montgomery [9], and others researched the skew grouping approach in the context of the Galois theory, as well as the grouping and the fixed ring. The link between the \mathcal{G} -prime ideals of \mathcal{R} and the prime ideals of skew grouping $\mathcal{R}\mathcal{G}$ was identified by Lorenz and Passman [8]. Montgomery [9] investigated the relationship between the prime ideals of \mathcal{R} and $\mathcal{R}^{\mathcal{G}}$, leading him to broaden the scope of the action of a group to Spec \mathcal{R} .

The idea of intuitionistic fuzzy sets was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set given by Zadeh [21]. Kim et al. in [4] considered the intuitionistic fuzzification of ideal of Γ -ring which were further studied by Palaniappan at al. in [13, 14, 11]. The notion of intuitionistic fuzzy prime ideal and semiprime were studied by Palaniappan and Ramachandran in [12]. Authors in [16] and [18] studied intuitionistic fuzzy characteristic ideals and intuitionistic fuzzy primary ideals in Γ -ring respectively.

Lee and Park [7] recently investigate the action of group on intuitionistic fuzzy ideal of a ring \mathcal{R} and found a relationship between the intuitionistic fuzzy \mathcal{G} -prime ideals of \mathcal{R} and the intuitionistic fuzzy prime ideal of \mathcal{R} . We define the action of group on an intuitionistic fuzzy ideal of Γ -ring \mathcal{M} and investigate the action of group on intuitionistic fuzzy ideals and \mathcal{G} -invariant intuitionistic fuzzy ideals of \mathcal{M} . The homomorphic behaviour of group action on intuitionistic fuzzy ideals of Γ -ring \mathcal{M} have also been analysed.

2 Preliminaries

Let us recall some definitions and results, which are necessary for the development of the paper. Throughout this paper unless stated otherwise all Γ -rings are commutative Γ -ring with unity.

Definition 2.1. ([10, 3]) If $(\mathcal{M}, +)$ and $(\Gamma, +)$ are additive Abelian groups, then \mathcal{M} is called a Γ -ring (in the sense of Barnes [3]) if there exist mapping $\mathcal{M} \times \Gamma \times \mathcal{M} \to \mathcal{M}$ [image of (x, α, y) is denoted by $x\alpha y, x, y \in \mathcal{M}, \gamma \in \Gamma$] satisfying the following conditions:

- (1) $x\alpha y \in \mathcal{M}$.
- (2) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha+\beta)y = x\alpha y + x\beta y$, $x\alpha(y+z) = x\alpha y + x\alpha z$.
- (3) $(x\alpha y)\beta z = x\alpha(y\beta z)$. for all $x, y, z \in \mathcal{M}$, and $\gamma \in \Gamma$.

The Γ -ring \mathcal{M} is called commutative if $x\gamma y = y\gamma x, \forall x, y \in \mathcal{M}, \gamma \in \Gamma$. An element $1 \in \mathcal{M}$ is said to be the unity of \mathcal{M} if for each $x \in \mathcal{M}$ there exists $\gamma \in \Gamma$ such that $x\gamma 1 = 1\gamma x = x$.

A subset $\mathcal N$ of a Γ -ring $\mathcal M$ is a left (right) ideal of $\mathcal M$ if $\mathcal N$ is an additive subgroup of $\mathcal M$ and $\mathcal M\Gamma\mathcal N=\{x\alpha y|x\in\mathcal M,\alpha\in\Gamma,y\in\mathcal N\}$, (" $\mathcal N\Gamma\mathcal M=\{x\alpha y|x\in\mathcal N,\alpha\in\Gamma,y\in\mathcal M\}$ ") is contained in $\mathcal N$. If $\mathcal N$ is both a left and a right ideal then $\mathcal N$ is a two-sided ideal, or simply an ideal of $\mathcal M$. A Γ -ring $\mathcal M$ is said to be commutative if $a\gamma b=b\gamma a$ for all $a,b\in\mathcal M$ and $\gamma\in\Gamma$. A mapping $\sigma:\mathcal M\to\mathcal M'$ of Γ -rings is called a Γ -homomorphism [3] if $\sigma(x+y)=\sigma(x)+\sigma(y)$ and $\sigma(x\alpha y)=\sigma(x)\alpha\sigma(y)$ for all $x,y\in\mathcal M,\alpha\in\Gamma$.

Definition 2.2. ([20]) A proper ideal \mathcal{I} of a Γ -ring \mathcal{M} is called a prime if for any ideal \mathcal{U}, \mathcal{V} of $\mathcal{M} \mathcal{U} \Gamma \mathcal{V} \subseteq \mathcal{I}$ implies $\mathcal{U} \subseteq \mathcal{I}$ or $\mathcal{V} \subseteq \mathcal{I}$.

Definition 2.3. ([1, 2]) An intuitionistic fuzzy set A in \mathcal{X} can be represented as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in \mathcal{X} \}$, where the functions $\mu_A, \nu_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in \mathcal{X}$ to A, respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in \mathcal{X}$.

Remark 2.4. ([1, 2]) When $\mu_A(x) + \nu_A(x) = 1, \forall x \in \mathcal{X}$, then A is called a fuzzy set.

If $A, B \in IFS(\mathcal{X})$, then $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x), \forall x \in \mathcal{X}$. Also, $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$. For any subset \mathcal{Y} of \mathcal{X} , the intuitionistic fuzzy characteristic function $\chi_{\mathcal{Y}}$ is an intuitionistic fuzzy set of \mathcal{X} , defined by: $\chi_{\mathcal{Y}}(x) = (1,0), \forall x \in \mathcal{Y}$ and $\chi_{\mathcal{Y}}(x) = (0,1), \forall x \in \mathcal{X} \setminus \mathcal{Y}$. Let $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$. Then the crisp set $A_{(\alpha,\beta)} = \{x \in \mathcal{X} : \mu_A(x) \geq \alpha \text{ and } \nu_A(x) \leq \beta\}$ is called the (α,β) -level cut subset of A. Also, the IFS $x_{(\alpha,\beta)}$ of \mathcal{X} defined as $x_{(\alpha,\beta)}(y) = (\alpha,\beta)$, if y = x, otherwise (0,1) is called the intuitionistic fuzzy point (IFP) in \mathcal{X} with support x. By $x_{(\alpha,\beta)} \in A$ we mean $\mu_A(x) \geq \alpha$ and $\nu_A(x) \leq \beta$. Furthermore, if $\sigma : \mathcal{X} \to \mathcal{Y}$ is a mapping, and A and B are IFS of \mathcal{X} and \mathcal{Y} , respectively, then the image $\sigma(A)$, is an IFS of \mathcal{Y} , is defined as: $\mu_{\sigma(A)}(y) = \sup\{\mu_A(x) : \sigma(x) = y\}$, $\nu_{\sigma(A)}(y) = \inf\{\nu_A(x) : \sigma(x) = y\}$, for all $y \in \mathcal{Y}$. The inverse image $\sigma^{-1}(B)$, is an IFS of \mathcal{X} , is defined as: $\mu_{\sigma^{-1}(B)}(x) = \mu_B(\sigma(x))$, $\nu_{\sigma^{-1}(B)}(x) = \nu_B(\sigma(x))$, for all $x \in \mathcal{X}$, i.e., $\sigma^{-1}(B)(x) = B(\sigma(x))$, for all $x \in \mathcal{X}$. Furthermore, the IFS A of \mathcal{X} is said to be σ -invariant if for any $x, y \in \mathcal{X}$, whenever $\sigma(x) = \sigma(y)$ implies A(x) = A(y).

Definition 2.5. ([4, 14]) Let A and B be two IFSs of a Γ -ring \mathcal{M} , and $\gamma \in \Gamma$. Then the intrinsic product $A\Gamma B$ is defined by:

$$(\mu_{A\Gamma B}(x), \nu_{A\Gamma B}(x)) = \begin{cases} (\sup_{x=y\gamma z} \min\{\mu_A(y), \mu_B(z)\}, \inf_{x=y\gamma z} \max\{\nu_A(y), \nu_B(z)\}), & \text{if } x = y\gamma z \\ (0, 1), & \text{otherwise} \end{cases}$$

Definition 2.6. ([4, 14]) Let A be an IFS of a Γ -ring \mathcal{M} . Then A is called an intuitionistic fuzzy ideal of \mathcal{M} , if for all $x, y \in \mathcal{M}, \gamma \in \Gamma$, the following are satisfied:

- (i) $\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\};$
- (ii) $\mu_A(x\gamma y) \ge \max\{\mu_A(x), \mu_A(y)\};$
- (iii) $\nu_A(x-y) \le \max\{\nu_A(x), \nu_A(y)\};$
- (iv) $\nu_A(x\gamma y) \leq \min\{\nu_A(x), \nu_A(y)\}.$

The set of all intuitionistic fuzzy ideals of a Γ -ring \mathcal{M} is denoted by $IFI(\mathcal{M})$. Note that if $A \in IFI(\mathcal{M})$, then $\mu_A(0_{\mathcal{M}}) \geq \mu_A(x) \geq \mu_A(1_{\mathcal{M}})$ and $\nu_A(0_{\mathcal{M}}) \leq \nu_A(x) \leq \nu_A(1_{\mathcal{M}}), \forall x \in \mathcal{M}$ (see [21]).

Definition 2.7. ([12, 18]) Let P be an IFI of a Γ -ring \mathcal{M} . Then P is said to be prime if it is non-constant, and for any IFIs A and B of \mathcal{M} , $A\Gamma B \subset P$ implies $A \subseteq P$ or $B \subseteq P$.

Remark 2.8. ([12, 18]) Let $x_{(p,q)}, y_{(t,s)} \in IFP(\mathcal{M})$. Then

$$x_{(p,q)}\Gamma y_{(t,s)} = (x\Gamma y)_{(p\wedge t, q\vee s)}$$

Theorem 2.9. ([12, 18]) Let \mathcal{M} be a commutative Γ -ring, and let A be an IFI of \mathcal{M} . Then following are equivalent:

- (i) A is an intuitionistic fuzzy prime ideal of \mathcal{M} .
- (ii) For any $x_{(p,q)}, y_{(t,s)} \in IFP(\mathcal{M})$ such that $x_{(p,q)}\Gamma y_{(t,s)} \subseteq A \Rightarrow x_{(p,q)} \subseteq A$ or $y_{(t,s)} \subseteq A$.

Proposition 2.10. ([17]) Let \mathcal{M} and \mathcal{M}' be Γ -rings. If $\sigma : \mathcal{M} \to \mathcal{M}'$ is a surjective homomorphism, then for all $x \in \mathcal{M}$ and $p, q \in (0, 1]$ such that $p + q \leq 1$, we have

$$\sigma(x_{(p,q)}) = (\sigma(x))_{(p,q)}$$

Theorem 2.11. ([12, 17]) Let $f : \mathcal{M} \to \mathcal{M}'$ be a surjective Γ -homomorphism, and let A be an f-invariant IF prime ideal of \mathcal{M} , and B be an IF prime ideal of \mathcal{M}' . Then f(A) and $f^{-1}(B)$ are IF prime ideal of \mathcal{M}' and \mathcal{M} , respectively.

3 Group action on intuitionistic fuzzy ideals of Γ -ring

In this section, we study the group action on the intuitionistic fuzzy ideals of the Γ -ring. Using this concept, we develop the notion of a \mathcal{G} -invariant intuitionistic fuzzy ideal of the Γ -ring, which is further utilized to define the concept of intuitionistic fuzzy \mathcal{G} -prime ideals. Various related properties of these notions will also be analysed.

Definition 3.1. ([1]) Let \mathcal{G} be a group and \mathcal{S} a non-empty set. Then the mapping $\phi : \mathcal{G} \times \mathcal{S} \to \mathcal{S}$, with $\phi(g, x)$ written as g * x, is an action of \mathcal{G} on \mathcal{S} if and only if, for all $g, h \in \mathcal{G}$ and $x \in \mathcal{S}$, the following conditions hold:

- 1. q * (h * x) = (qh) * x,
- 2. e * x = x, where e is the identity element of the group \mathcal{G} .

We assume that \mathcal{M} is a Γ -ring and $\mathcal{G} = Aut(\mathcal{M})$ is the group of automorphism of \mathcal{M} . Then \mathcal{G} acts on \mathcal{M} , defined by $\phi(g,x) = g(x), i.e., g*x = g(x)$. In this section, we define the group action of \mathcal{G} on an intuitionistic fuzzy set (IFS) A of the Γ -ring \mathcal{M} .

Definition 3.2. The group action of \mathcal{G} on an IFS A of a Γ -ring \mathcal{M} is denoted by A^g and is defined as $A^g = \{\langle x, \mu_{A^g}(x), \nu_{A^g}(x) \rangle : x \in \mathcal{M} \}$, where $\mu_{A^g}(x) = \mu_A(x^g)$ and $\nu_{A^g}(x) = \nu_A(x^g)$ for every $x \in \mathcal{M}, g \in \mathcal{G}$.

Example 3.3. Consider $\mathcal{M} = \mathbf{Z}_2 \times \mathbf{Z}_2 = \{(0,0),(1,0),(0,1),(1,1)\}$, $\Gamma = \{(0,0),(1,1)\}$ and $\mathcal{K} = \mathbf{Z}_2 \times \{0\} = \{(1,0),(0,0)\}$ and $\mathcal{H} = \{0\} \times \mathbf{Z}_2 = \{(0,0),(0,1)\}$, where \mathbf{Z}_2 is the ring of integers modulo 2. Clearly, \mathcal{M} and Γ are additive abelian groups, and that \mathcal{M} is a Γ -ring. Moreover, \mathcal{K} and \mathcal{H} are Γ -ideals of \mathcal{M} .

Consider the IFS A on \mathcal{M} defined as follows:

$$\mu_A((x,y)) = \begin{cases} 1, & \text{if } (x,y) \in \mathcal{K} \\ 0.5, & \text{if } (x,y) \notin \mathcal{K} \end{cases}; \quad \nu_A((x,y)) = \begin{cases} 0, & \text{if } (x,y) \in \mathcal{K} \\ 0.3, & \text{if } (x,y) \notin \mathcal{K} \end{cases}.$$

Now, $\mathcal{G} = Aut(\mathcal{M}) = \{g_1 = i, g_2, g_3, g_4, g_5, g_6\}$ be the group of automorphisms of \mathcal{M} , where

$$g_{1} = \{(0,0) \to (0,0); (0,1) \to (0,1); (1,0) \to (1,0); (1,1) \to (1,1)\}$$

$$g_{2} = \{(0,0) \to (0,0); (0,1) \to (1,1); (1,0) \to (1,0); (1,1) \to (0,1)\}$$

$$g_{3} = \{(0,0) \to (0,0); (0,1) \to (0,1); (1,0) \to (1,1); (1,1) \to (1,0)\}$$

$$g_{4} = \{(0,0) \to (0,0); (0,1) \to (1,0); (1,0) \to (0,1); (1,1) \to (1,1)\}$$

$$g_{5} = \{(0,0) \to (0,0); (0,1) \to (1,0); (1,0) \to (1,1); (1,1) \to (0,1)\}$$

$$g_{6} = \{(0,0) \to (0,0); (0,1) \to (1,1); (1,0) \to (0,1); (1,1) \to (1,0)\}.$$

Now, it is easy to see that, for $g = g_1$ or $g_2 \in \mathcal{G}$, $A^g = A$ and for $g = g_4$ or $g_5 \in \mathcal{G}$, A^g is given by

$$\mu_{A^g}((x,y)) = \begin{cases} 1, & \text{if } (x,y) \in \mathcal{H} \\ 0.5, & \text{if } (x,y) \notin \mathcal{H} \end{cases}; \quad \nu_{A^g}((x,y)) = \begin{cases} 0, & \text{if } (x,y) \in \mathcal{H} \\ 0.3, & \text{if } (x,y) \notin \mathcal{H}. \end{cases}$$

Also, for $g = g_3$ or $g_6 \in \mathcal{G}$, A^g is given by

$$\mu_{A^g}((x,y)) = \begin{cases} 1, & \text{if } (x,y) \in \{(0,0),(1,1)\} \\ 0.5, & \text{if } (x,y) \notin \{(0,0),(1,1)\} \end{cases}; \quad \nu_{A^g}((x,y)) = \begin{cases} 0, & \text{if } (x,y) \in \{(0,0),(1,1)\} \\ 0.3, & \text{if } (x,y) \notin \{(0,0),(1,1)\}. \end{cases}$$

From the definition of group action on an IFS, the following results are easy to derive.

Lemma 3.4. Let A and B be two IFSs of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on A and B. Then:

- 1. $(A \cap B)^g = A^g \cap B^g, \forall g \in \mathcal{G};$
- 2. $(A \cup B)^g = A^g \cup B^g, \forall g \in \mathcal{G};$
- 3. $(A \times B)^g = A^g \times B^g, \forall q \in \mathcal{G}$;
- 4. If $A \subseteq B$, then $A^g \subseteq B^g$, $\forall g \in \mathcal{G}$;
- 5. $(A^g)^h = A^{gh}, \forall g, h \in \mathcal{G};$
- 6. $(A^g)^{g^{-1}} = A^e, \forall g \in \mathcal{G}.$

Lemma 3.5. Let \mathcal{G} be a finite group which acts on a Γ -ring \mathcal{M} . Then for $x, y \in \mathcal{M}$, $\gamma \in \Gamma$, $g \in \mathcal{G}$, we have

- 1. $(x-y)^g = x^g y^g$;
- 2. $(x\gamma y)^g = x^g \gamma y^g$;
- 3. $(x,y)^g = (x^g, y^g)$;

Proposition 3.6. Let A be an IFI of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on A. Then A^g is also an IFI of \mathcal{M} .

Proof. Let $x, y \in \mathcal{M}, \gamma \in \Gamma, g \in \mathcal{G}$ be any elements. Then

$$\mu_{A^g}(x-y) = \mu_A((x-y)^g) = \mu_A(x^g - y^g)$$

$$\geq \min\{\mu_A(x^g), \mu_A(y^g)\}$$

$$= \min\{\mu_{A^g}(x), \mu_{A^g}(y)\}.$$

Thus $\mu_{A^g}(x-y) \ge \min\{\mu_{A^g}(x), \mu_{A^g}(y)\}.$

Likewise, it can be established that $\nu_{A^g}(x-y) \leq \max\{\nu_{A^g}(x), \nu_{A^g}(y)\}$. Also,

$$\mu_{A^g}(x\gamma y) = \mu_A((x\gamma y)^g) = \mu_A(x^g \gamma y^g)$$

$$\geq \max\{\mu_A(x^g), \mu_A(y^g)\}$$

$$= \max\{\mu_{A^g}(x), \mu_{A^g}(y)\}.$$

Thus $\mu_{A^g}(x\gamma y) \ge \max\{\mu_{A^g}(x), \mu_{A^g}(y)\}.$

Likewise, it can be proved that $\nu_{Ag}(x\gamma y) \leq \min\{\nu_{Ag}(x), \nu_{Ag}(y)\}.$

Thus A^g is an IFI of \mathcal{M} .

Remark 3.7. It is easy to check that the IFS A as defined in Example 3.3 is an IFI of \mathcal{M} . Also, for $g = g_1$ or g_2 or g_4 or $g_5 \in \mathcal{G}$, A^g is also an IFI of \mathcal{M} . However, for $g = g_3$ or $g_6 \in \mathcal{G}$, A^g is not an IFI of \mathcal{M} , for

$$\mu_{A^{g_6}}((1,1)(1,1)(0,1)) = \mu_{A^{g_6}}((0,1)) = 0.5 \ngeq 1 = \max\{\mu_{A^{g_6}}((1,1)), \mu_{A^6}((0,1))\} = \{1,0.5\};$$

$$\nu_{A^{g_6}}((1,1)(1,1)(0,1)) = \nu_{A^{g_6}}((0,1)) = 0.3 \nleq 0 = \min\{\nu_{A^{g_6}}((1,1)), \nu_{A^{g_6}}((0,1))\} = \{0,0.3\}.$$

Definition 3.8. Let A be an IFI of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on A. Then A is called an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M} if A^g is an IFI of \mathcal{M} for all $g \in \mathcal{G}$.

Proposition 3.9. If A, B are two IFIs of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on A and B, then $(A \cap B)^g$ is also an IFI of \mathcal{M} .

Proof. Follows from Lemma 3.4(1) and Proposition 3.6.

Proposition 3.10. If A, B are two IFIs of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on A and B, then $(A \times B)^g$ is also an IFI of \mathcal{M} .

Proof. Follows from Lemma 3.4(3) and Proposition 3.6.

Proposition 3.11. If P is an intuitionistic fuzzy prime ideal of a Γ -ring \mathcal{M} , then P^g is also an intuitionistic fuzzy prime ideal of \mathcal{M} , where $g \in \mathcal{G}$ be any element.

Proof. Let A,B be two IFIs of a near ring $\mathcal M$ with $A\Gamma B\subseteq P^g$, where $g\in\mathcal G$ be any element. Now, we claim that $A^{g^{-1}}\Gamma B^{g^{-1}}\subseteq P$. It is sufficient to show that $\mu_{A^{g^{-1}}\Gamma B^{g^{-1}}}(x)\leq \mu_P(x)$ and $\nu_{A^{g^{-1}}\Gamma B^{g^{-1}}}(x)\geq \nu_P(x), \, \forall \gamma\in\Gamma, x\in\mathcal M$.

$$\begin{array}{ll} \mu_{A^{g^{-1}}\Gamma B^{g^{-1}}}(x) & = & \displaystyle \sup_{x=a\gamma b} \{\min(\mu_{A^{g^{-1}}}(a),\mu_{B^{g^{-1}}}(b))\} \\ & = & \displaystyle \sup_{x^{g^{-1}}=a^{g^{-1}}\gamma b^{g^{-1}}} \{\min(\mu_{A}(a^{g^{-1}}),\mu_{B}(b^{g^{-1}}))\} \\ & = & \displaystyle \mu_{A\Gamma B}(x^{g^{-1}}) \\ & \leq & \displaystyle \mu_{P^{g}}(x^{g^{-1}}) \\ & = & \displaystyle \mu_{P}(x). \end{array}$$

Thus $\mu_{A^{g^{-1}}\Gamma B^{g^{-1}}}(x) \leq \mu_P(x)$. Likewise, it can be established that $\nu_{A^{g^{-1}}\Gamma B^{g^{-1}}}(x) \geq \nu_P(x)$. Hence $A^{g^{-1}}\Gamma B^{g^{-1}} \subseteq P$ which implies that either $A^{g^{-1}} \subseteq P$ or $B^{g^{-1}} \subseteq P$, i.e., either $A \subseteq P^g$ or $B \subseteq P^g$, for if, $A^{g^{-1}} \subseteq P$, then $\mu_A(x) = \mu_A((x^g)^{g^{-1}}) = \mu_{A^{g^{-1}}}(x^g) \leq \mu_P(x^g) = \mu_{P^g}(x)$. Similarly, we have $\nu_A(x) \geq \nu_{P^g}(x)$. Thus $A \subseteq P^g$. Hence P^g is an IF prime ideal of \mathcal{M} . \square

By using the definition of \mathcal{G} -invariant ideal of a ring \mathcal{M} , we define \mathcal{G} -invariant intuitionistic fuzzy ideal and \mathcal{G} -invariant intuitionistic fuzzy prime ideal of Γ -ring \mathcal{M} .

Definition 3.12. Let A be an IFS of a Γ -ring \mathcal{M} , and let \mathcal{G} be a group which acts on \mathcal{M} . Then A is said to be \mathcal{G} -invariant IFS of \mathcal{M} if and only if

$$\mu_{A^g}(x) = \mu_A(x^g) \ge \mu_A(x), \nu_{A^g}(x) = \nu_A(x^g) \le \nu_A(x), \forall x \in \mathcal{M} \text{ and } \forall g \in \mathcal{G}.$$

Proposition 3.13. Let A be an IFS of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on \mathcal{M} . Then A is \mathcal{G} -invariant IFS of \mathcal{M} if and only if $A^g = A$, for all $g \in \mathcal{G}$.

Proof. For
$$x \in \mathcal{M}, g \in \mathcal{G}$$
, we have $\mu_A(x) = \mu_A((x^g)^{g^{-1}}) \ge \mu_A(x^g) \ge \mu_A(x)$ implies that $\mu_A(x) = \mu_A(x^g) = \mu_{A^g}(x)$. Similarly, we have $\nu_A(x) = \nu_{A^g}(x)$. Hence $A^g = A$.

Theorem 3.14. Let A be an IFS of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on \mathcal{M} . Let $A^{\mathcal{G}} = \bigcap_{g \in \mathcal{G}} A^g$. Then $A^{\mathcal{G}} = (\mu_{A^{\mathcal{G}}}, \nu_{A^{\mathcal{G}}})$, where $\mu_{A^{\mathcal{G}}}(x) = \min\{\mu_A(x^g) : g \in \mathcal{G}\}$ and $\nu_{A^{\mathcal{G}}}(x) = \max\{\nu_A(x^g) : g \in \mathcal{G}\}, \forall x \in \mathcal{M}$. Moreover, $A^{\mathcal{G}}$ is the largest \mathcal{G} -invariant IFS of \mathcal{M} contained in A.

Proof. Since A be an IFS of \mathcal{M} and so A^g is IFS of \mathcal{M} for all $g \in \mathcal{G}$. Also, intersection of IFSs of \mathcal{M} is an IFS of \mathcal{M} and so A^g is an IFS of \mathcal{M} . Next, we show that A^g is \mathcal{G} -invariant IFS of \mathcal{M} . Now,

$$\mu_{A^{\mathcal{G}}}(x^{g}) = \min\{\mu_{A^{h}}(x^{g}) : h \in \mathcal{G}\}$$

$$= \min\{\mu_{A}\{(x^{g})^{h}\} : h \in \mathcal{G}\}$$

$$= \min\{\mu_{A}(x^{g^{h}}) : h \in \mathcal{G}\}$$

$$= \min\{\mu_{A}(x^{g'}) : g' \in \mathcal{G}\}$$

$$= \mu_{A^{\mathcal{G}}}(x).$$

Likewise, it can be proved that $\nu_{A^{\mathcal{G}}}(x^g) = \nu_{A^{\mathcal{G}}}(x), \forall x \in \mathcal{M}$. Thus $A^{\mathcal{G}}$ is \mathcal{G} -invariant IFS of \mathcal{M} . Further, let B be any \mathcal{G} -invariant IFS of \mathcal{M} such that $B \subseteq A$. Then for any $x \in \mathcal{M}, g \in \mathcal{G}$, we get $\mu_B(x^g) = \mu_B(x) \leq \mu_A(x)$ and $\nu_B(x^g) = \nu_B(x) \geq \nu_A(x)$. Now,

$$\mu_B(x^g) = \mu_B(x) = \mu_B\{(x^g)^{g^{-1}}\} \le \mu_A(x^g) \Rightarrow \mu_B(x) \le \min\{\mu_A(x^g) : g \in \mathcal{G}\} = \mu_{A^{\mathcal{G}}}(x).$$

Similarly,

$$\nu_B(x^g) = \nu_B(x) = \nu_B\{(x^g)^{g^{-1}}\} \ge \nu_A(x^g) \Rightarrow \nu_B(x) \ge \max\{\nu_A(x^g) : g \in G\} = \nu_{A^g}(x).$$

Thus $B \subseteq A^{\mathcal{G}}$. Hence $A^{\mathcal{G}}$ is the largest \mathcal{G} -invariant IFS of \mathcal{M} contained in A.

Proposition 3.15. Let A be an IFI of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on \mathcal{M} . Then $A^{\mathcal{G}}$ is the largest \mathcal{G} -invariant IFI of \mathcal{M} contained in A.

Proof. Let $x, y \in \mathcal{M}, \gamma \in \Gamma, g \in \mathcal{G}$ be any element, then

$$\begin{array}{rcl} \mu_{A^{\mathcal{G}}}(x-y) & = & \min\{\mu_{A}((x-y)^{g}):g\in\mathcal{G}\}\\ \\ & = & \min\{\mu_{A}(x^{g}-y^{g}):g\in\mathcal{G}\}\\ \\ & \geq & \min\{\min\{\mu_{A}(x^{g}),\mu_{A}(y^{g})\}:g\in\mathcal{G}\}\\ \\ & = & \min\{\min\{\mu_{A}(x^{g}):g\in\mathcal{G}\},\min\{\mu_{A}(y^{g}):g\in\mathcal{G}\}\}\\ \\ & = & \min\{\mu_{A^{\mathcal{G}}}(x),\mu_{A^{\mathcal{G}}}(y)\}. \end{array}$$

Likewise, it can be established that $\nu_{A^{\mathcal{G}}}(x-y) \leq \max\{\nu_{A^{\mathcal{G}}}(x), \nu_{A^{\mathcal{G}}}(y)\}$. Also,

$$\mu_{A^{\mathcal{G}}}(x\gamma y) = \min\{\mu_{A}((x\gamma y)^{g}) : g \in \mathcal{G}\}$$

$$= \min\{\mu_{A}(x^{g}\gamma y^{g}) : g \in \mathcal{G}\}$$

$$\geq \min\{\max\{\mu_{A}(x^{g}), \mu_{A}(y^{g})\} : g \in \mathcal{G}\}$$

$$= \max\{\min\{\mu_{A}(x^{g}), \mu_{A}(y^{g})\} : g \in \mathcal{G}\}$$

$$= \max\{\min\{\mu_{A}(x^{g}) : g \in \mathcal{G}\}, \min\{\mu_{A}(y^{g}) : g \in \mathcal{G}\}\}$$

$$= \max\{\mu_{A^{\mathcal{G}}}(x), \mu_{A^{\mathcal{G}}}(y)\}.$$

Hence $A^{\mathcal{G}}$ is an IFI of \mathcal{M} . Further, $A^{\mathcal{G}}$ is the largest \mathcal{G} -invariant IFI of \mathcal{M} contained in A can be proved similar to Theorem 3.14.

Proposition 3.16. An IFI A of a Γ -ring \mathcal{M} is \mathcal{G} -invariant IFI of \mathcal{M} if and only if $A^{\mathcal{G}} = A$.

Proof. From Proposition 3.15 we get $A^{\mathcal{G}} \subseteq A$. Also, because A is \mathcal{G} -invariant IFS of \mathcal{M} and $A \subseteq A$ implies that $A \subseteq A^{\mathcal{G}}$. Hence $A^{\mathcal{G}} = A$.

Example 3.17. Consider $\mathcal{M}, \Gamma, \mathcal{G}$ and the IFS A as in Example (3.3).

Then it is easy to obtain $A^{\mathcal{G}}$ as:

$$\mu_{A^{\mathcal{G}}}((x,y)) = \begin{cases} 1, & \text{if } (x,y) = (0,0) \\ 0.5, & \text{if } (x,y) \neq (0,0) \end{cases}; \quad \nu_{A^{\mathcal{G}}}((x,y)) = \begin{cases} 0, & \text{if } (x,y) = (0,0) \\ 0.3, & \text{if } (x,y) \neq (0,0). \end{cases}$$

Since $A^{\mathcal{G}} \neq A$. So A is not a \mathcal{G} -invariant IFI of \mathcal{M} .

Example 3.18. Consider $\mathcal{M} = \mathbf{Z_6} = \{0, 1, 2, 3, 4, 5\}$, $\Gamma = \mathbf{Z_2} = \{0, 1\}$. Then \mathcal{M} is a Γ -ring. Take $\mathcal{K} = \{0, 2, 4\}$ be a Γ -ideal of \mathcal{M} . Define an IFS A on \mathcal{M} as

$$\mu_A(x) = \begin{cases} 1, & \text{if } x \in \mathcal{K} \\ 0.5, & \text{if } x \notin \mathcal{K} \end{cases}; \quad \nu_A((x,y)) = \begin{cases} 0, & \text{if } x \in \mathcal{K} \\ 0.3, & \text{if } x \notin \mathcal{K}. \end{cases}$$

It is easy to check that A is an IFI of \mathcal{M} . Let $\mathcal{G} = Aut(\mathcal{M}) = \{i,g\}$ be the automorphism group of \mathcal{M} , where $g = \{1 \to 5, 2 \to 4, 3 \to 3, 4 \to 2, 5 \to 1, 0 \to 0\}$. Now it is easy to check that $A^g = A, \forall g \in \mathcal{G}$. Moreover, we also get that $A^{\mathcal{G}} = A$. Hence A is a \mathcal{G} -invariant IFI of \mathcal{M} .

Theorem 3.19. If A and B are G-invariant IFIs of a Γ -ring M, then A + B is also a G-invariant IFI of M.

Proof. Suppose $x \in \mathcal{M}, g \in \mathcal{G}$ be any elements, then

$$\mu_{(A+B)^g}(x) = \mu_{A+B}(x^g)$$

$$= \sup_{x^g = a+b} \{ \mu_A(a), \mu_B(b) \}$$

$$= \sup_{x^g = a+b} \{ \mu_A(a^{g^{-1}}), \mu_B(b^{g^{-1}}) \}$$

$$= \sup_{x = a^{g^{-1}} + b^{g^{-1}}} \{ \mu_A(a^{g^{-1}}), \mu_B(b^{g^{-1}}) \}$$

$$= \mu_{A+B}(x).$$

Likewise, it can be established that $\nu_{(A+B)^g}(x) = \nu_{A+B}(x)$. Thus $(A+B)^g = A+B, \forall g \in \mathcal{G}$. Hence A+B is also a \mathcal{G} -invariant IFI of \mathcal{M} .

Theorem 3.20. If A and B are G-invariant IFIs of a Γ -ring \mathcal{M} , then $A\Gamma B$ is also a G-invariant IFI of \mathcal{M} .

Proof. Let $x \in \mathcal{M}, \gamma \in \Gamma, g \in \mathcal{G}$ be any elements, then

$$\begin{array}{rcl} \mu_{(A\Gamma B)^g}(x) & = & \sup_{x^g = a\gamma b} \min\{\mu_A(a), \mu_B(b)\} \\ & = & \sup_{x^g = a\gamma b} \min\{\mu_A(a^{g^{-1}}), \mu_B(b^{g^{-1}})\} \\ & = & \sup_{x = a^{g^{-1}}\gamma b^{g^{-1}}} \min\{\mu_A(a^{g^{-1}}), \mu_B(b^{g^{-1}})\} \\ & = & \mu_{A\Gamma B}(x). \end{array}$$

Likewise, it can be established that $\nu_{(A\Gamma B)^g}(x) = \nu_{A\Gamma B}(x)$. Thus $(A\Gamma B)^g = A\Gamma B, \forall g \in \mathcal{G}$. Hence $A\Gamma B$ is also a \mathcal{G} -invariant IFI of \mathcal{M} .

Definition 3.21. Let P be a non-constant IFI of a Γ -ring \mathcal{M} , and let \mathcal{G} be a finite group which acts on P. Then P is termed as an IF \mathcal{G} -prime ideal of \mathcal{M} if P is \mathcal{G} -invariant IF prime ideal of \mathcal{M} .

Proposition 3.22. Let P be an IF G-prime ideal of M. Then $P_{(s,t)}$ is a G-prime ideal of M, where $s \in [\mu_P(1), \mu_P(0)]$ and $t \in [\nu_P(0), \nu_P(1)]$ such that $s + t \leq 1$.

Proof. It is easy to show that $P_{(s,t)}$ is an ideal of \mathcal{M} . We show that $P_{(s,t)}$ is a \mathcal{G} -invariant. Let $x \in P_{(s,t)}, g \in \mathcal{G}$ be any element. Since P is \mathcal{G} -invariant intuitionistic fuzzy prime ideal of \mathcal{M} , so $\mu_P(x^g) = \mu_P(x) \geq s$ and $\nu_P(x^g) = \nu_P(x) \leq t, \forall g \in \mathcal{G}$ implies that $x^g \in P_{(s,t)}, \forall g \in \mathcal{G}$. Hence $P_{(s,t)}$ is \mathcal{G} -invariant.

Next we show that $P_{(s,t)}$ is a prime ideal of \mathcal{M} . Let I and J be two \mathcal{G} -invariant ideals of \mathcal{M} such that $I\Gamma J\subseteq P_{(s,t)}$. Define two IFSs $A=\chi_I$ and $B=\chi_J$. It is easy to check that A and B are \mathcal{G} -invariant IFIs of \mathcal{M} (as I and J are \mathcal{G} -invariant ideals). We claim that $A\Gamma B\subseteq P$. Let

 $x\in\mathcal{M},\,\gamma\in\Gamma$ be any element. If $A\Gamma B(x)=(0,1)$, there is nothing to prove. If $A\Gamma B(x)\neq (0,1)$, then $\mu_{A\Gamma B}(x)=\sup_{x=y\gamma z}\min\{\mu_A(y),\mu_B(z)\}=\sup_{x=y\gamma z}\min\{\mu_{\chi_I}(y),\mu_{\chi_I}(z)\}\neq 0$ and $\nu_{A\Gamma B}(x)=\inf_{x=y\gamma z}\max\{\nu_A(y),\nu_B(z)\}=\inf_{x=y\gamma z}\max\{\nu_{\chi_I}(y),\nu_{\chi_I}(z)\}\neq 1$. This implies that there exist $y\in I, z\in J$ such that $x=y\gamma z$. Moreover, $A\Gamma B(x)=(s,t)$. Thus $x=y\gamma z\in I\Gamma J\subseteq P_{(s,t)}$. So $\mu_P(x)\geq s,\nu_P(x)\leq t$. Hence $A\Gamma B\subseteq P$. Since P is an intuitionistic fuzzy $\mathcal G$ -prime ideal of $\mathcal M$, either $A\subseteq P$ or $B\subseteq P$. Suppose that, $A\subseteq P$, then $I\subseteq P_{(s,t)}$. For, if $I\supset P_{(s,t)}$, then there is an element $a\in\mathcal M$ such that $a\in I$, but $a\notin P_{(s,t)}$. This implies that $\mu_A(a)=\mu_{\chi_I}(a)=s$ and $\nu_A(a)=\nu_{\chi_I}(a)=t$, but $\mu_P(a)< s$ and $\nu_P(a)>t$. Thus $\mu_A(a)=s>\mu_P(a)$ and $\nu_A(a)=t<\nu_P(a)$. Hence $A\supset P$, a contradiction. Similarly, we have $B\subseteq P$. Hence $P_{(s,t)}$ is $\mathcal G$ -prime ideal of $\mathcal M$.

From the above discussion on the results on intuitionistic fuzzy prime ideals that are \mathcal{G} -invariant also. We can also define intuitionistic fuzzy \mathcal{G} -prime ideals in the following ways too

Definition 3.23. A non-constant \mathcal{G} -invariant IFI P of a Γ -ring \mathcal{M} is said to be \mathcal{G} -prime IFI if for any two \mathcal{G} -invariant IFIs A and B of \mathcal{M} such that $A\Gamma B \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$.

Proposition 3.24. Let P be an intuitionistic fuzzy G-invariant ideal of Γ -ring M. Then the following are equivalent:

- 1. P is an intuitionistic fuzzy G-prime ideal of M;
- 2. For any $x_{(p,q)}, y_{(s,t)} \in IFP(\mathcal{M})$, where $x, y \in \mathcal{M}$ are \mathcal{G} -invariant points such that $x_{(p,q)}\Gamma y_{(s,t)} \subseteq P$ implies that either $x_{(p,q)} \subseteq P$ or $y_{(s,t)} \subseteq P$.

Proof. $\underline{(1) \Rightarrow (2)}$: Assume that P is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M} . Let $x_{(p,q)}, y_{(s,t)} \in IFP(\mathcal{M})$, where $x,y \in \mathcal{M}$ are \mathcal{G} -invariant points such that $x_{(p,q)}\Gamma y_{(s,t)} \subseteq P$. Then $x_{(p,q)}\Gamma y_{(s,t)} = (x\Gamma y)_{(p\wedge s,q\vee t)}$, where $\mu_P(x\Gamma y) \geq p \wedge s$ and $\nu_P(x\Gamma y) \leq q \vee t$.

Define IFSs $A = \chi_{\langle x \rangle}$ and $B = \chi_{\langle y \rangle}$ of \mathcal{M} . Clearly, A and B are \mathcal{G} -invariant IFIs of \mathcal{M} . Now $\mu_{A\Gamma B}(z) = \sup_{z=u\gamma v} \min\{\mu_A(u), \mu_B(v)\} = p \land s; \ \nu_{A\Gamma B}(z) = \inf_{z=u\gamma v} \max\{\nu_A(u), \nu_B(v)\} = q \lor t,$ where $u \in \langle x \rangle$ and $v \in \langle y \rangle$. Thus $\mu_{A\Gamma B}(z) = p \land s \leq \mu_P(z)$ and $\nu_{A\Gamma B}(z) = q \lor t \geq \nu_P(z)$, when $z = u\gamma v$, where $u \in \langle x \rangle, v \in \langle y \rangle$ and $\gamma \in \Gamma$. Otherwise $A\Gamma B(z) = (0,1)$, i.e., $A\Gamma B \subseteq P$. As P is an intuitionistic fuzzy \mathcal{G} -prime ideal so either $A \subseteq P$ or $B \subseteq P$. Then $x_{(p,q)} \subseteq A \subseteq P$ or $y_{(s,t)} \subseteq B$.

Hence $\mu_P(z) = \mu_P(x\gamma y) \ge \mu_{A\Gamma B}(x\gamma y) \ge \min\{\mu_A(x), \mu_B(y)\} = p \land s = \mu_{(x\gamma y)_{(p \land s, q \lor t)}}(z)$. Similarly, we have $\nu_P(z) \le \nu_{(x\gamma y)_{(p \land s, q \lor t)}}(z)$. Hence $x_{(p,q)}\Gamma y_{(s,t)} \subseteq P$, then by (1), we get either $x_{(p,q)} \subseteq P$ or $y_{(s,t)} \subseteq P$, i.e., either $\mu_P(x) \ge p$, $\nu_P(x) \le q$ or $\mu_P(x) \ge s$, $\nu_P(x) \le t$.

Since $\mu_P(x) < p, \nu_P(x) > q$ and $\mu_B(y) = s \le \mu_P(y), \nu_B(y) = t \ge \nu_P(y)$. So, $B \subseteq P$.

Hence P is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M} .

Similarly, we can prove the following proposition.

Proposition 3.25. If P is an IF prime ideal of a Γ -ring \mathcal{M} , then $P^{\mathcal{G}}$ is \mathcal{G} -prime IFI ideal of \mathcal{M} . Conversely, if Q is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M} , then there exists an IF prime ideal P of \mathcal{M} such that $P^{\mathcal{G}} = Q$.

Proof. Let P be an intuitionistic fuzzy prime ideal of the Γ -ring \mathcal{M} and let A and B be two \mathcal{G} -invariant IFIs of \mathcal{M} such that $A\Gamma B \subseteq P^{\mathcal{G}}$. Then $A\Gamma B \subseteq P$ (since $P^{\mathcal{G}} \subseteq P$ always). So, either $A \subseteq P$ or $B \subseteq P$. But $P^{\mathcal{G}}$ is the largest \mathcal{G} -invariant IFI of \mathcal{M} contained in P. So, either $A \subseteq P^{\mathcal{G}}$ or $B \subseteq P^{\mathcal{G}}$. Hence $P^{\mathcal{G}}$ is \mathcal{G} -prime IFI ideal of \mathcal{M} .

For the converse part, suppose that Q is an IF \mathcal{G} -prime ideal of \mathcal{M} . Therefore, $Q^{\mathcal{G}}=Q$. Let $\mathcal{S}=\{P|P \text{ is an IFI of }\mathcal{M} \text{ with } P^{\mathcal{G}}\subseteq Q\}$. By Zorn's lemma, there exists an intuitionistic fuzzy maximal ideal P such that $P^{\mathcal{G}}\subseteq Q$. Let A and B be two IFIs of \mathcal{M} such that $A\Gamma B\subseteq P$. Then $(A\Gamma B)^{\mathcal{G}}\subseteq P^{\mathcal{G}}\subseteq Q$. Since $A^{\mathcal{G}}$ and $B^{\mathcal{G}}$ are largest IFIs of \mathcal{M} contained in A and B, respectively. We claim that $A^{\mathcal{G}}\Gamma B^{\mathcal{G}}\subseteq A\Gamma B$ is \mathcal{G} -invariant.

$$\begin{array}{lcl} \mu_{A^{\mathcal{G}}\Gamma B^{\mathcal{G}}}(x^g) & = & \displaystyle \sup_{x^g = u\gamma v} \min\{\mu_{A^{\mathcal{G}}}(u), \mu_{B^{\mathcal{G}}}(v)\} \\ \\ & = & \displaystyle \sup_{x = u^{g^{-1}}\gamma v^{g^{-1}}} \min\{\mu_{A^{\mathcal{G}}}(u^{g^{-1}}), \mu_{B^{\mathcal{G}}}(v^{g^{-1}})\} \\ \\ & = & \mu_{A^{\mathcal{G}}\Gamma B^{\mathcal{G}}}(x). \end{array}$$

Similarly, we can show that $\nu_{A^{\mathcal{G}}\Gamma B^{\mathcal{G}}}(x^g) = \nu_{A^{\mathcal{G}}\Gamma B^{\mathcal{G}}}(x)$. Hence $A^{\mathcal{G}}\Gamma B^{\mathcal{G}} \subseteq (A\Gamma B)^{\mathcal{G}} \subseteq Q$. Since Q is an IF \mathcal{G} prime ideal of \mathcal{M} , then we have either $A^{\mathcal{G}} \subseteq Q$ or $B^{\mathcal{G}} \subseteq Q$. By maximality of P either $A \subseteq P$ or $B \subseteq P$. This implies that P is an IF prime ideal of \mathcal{M} . As $Q^{\mathcal{G}} = Q$, we have $Q \in \mathcal{S}$. But maximality of P gives that $Q \subseteq P$. Since P and $Q^{\mathcal{G}}$ are \mathcal{G} invariant and $P^{\mathcal{G}}$ is largest in P, we get $Q \subseteq P^{\mathcal{G}}$. Hence $P^{\mathcal{G}} = Q$.

4 \mathcal{G} -homomorphism of intuitionistic fuzzy \mathcal{G} -ideals

In this part of paper, we explore the image and preimage of intuitionistic fuzzy \mathcal{G} -ideals under the Γ -ring homomorphism.

Definition 4.1. A Γ -ring homomorphism $\phi: \mathcal{M} \to \mathcal{M}'$ from a Γ -ring \mathcal{M} to a Γ -ring \mathcal{M}' with unity is called \mathcal{G} -homomorphism, if for all $g \in \mathcal{G}, x \in \mathcal{M}, \phi(g * x) = g * \phi(x)$, where group \mathcal{G} acts on both the Γ -rings.

Lemma 4.2. Let \mathcal{M} and \mathcal{M}' be Γ -rings and \mathcal{G} be a finite group which acts on \mathcal{M} and \mathcal{M}' . Let $f: \mathcal{M} \to \mathcal{M}'$ be a function defined by $f(x^g) = (f(x))^g, \forall x \in \mathcal{M}, g \in \mathcal{G}$. Then f is a Γ -ring homomorphism. Moreover, f is also a \mathcal{G} -homomorphism.

Proof. Let $x, y \in \mathcal{M}, \gamma \in \Gamma, g \in \mathcal{G}$ be any elements, then we have

$$f(x^g + y^g) = f((x + y)^g) = (f(x) + f(y))^g = (f(x))^g + (f(y))^g = f(x^g) + f(y^g) \text{ and } f(x^g \gamma y^g) = f((x \gamma y)^g) = (f(x) \gamma f(y))^g = (f(x))^g \gamma (f(y))^g = f(x^g) \gamma f(y^g).$$

$$f(g * (x_1 + x_2)) = f((x_1 + x_2)^g) = (f(x_1^g + x_2^g))$$

$$= f(x_1^g) + f(x_2^g) = (f(x_1))^g + (f(x_2))^g$$

$$= g * f(x_1) + g * f(x_2)$$

$$= g * (f(x_1) + f(x_2))$$

$$= g * f(x_1 + x_2).$$

Also,

$$f(g * (x_1 \gamma x_2)) = f((x_1 \gamma x_2)^g) = (f(x_1^g \gamma x_2^g))$$

$$= f(x_1^g) \gamma f(x_2^g) = (f(x_1))^g \gamma (f(x_2))^g$$

$$= (g * f(x_1)) \gamma (g * f(x_2))$$

$$= g * (f(x_1) \gamma f(x_2))$$

$$= g * f(x_1 \gamma x_2).$$

Therefore f is a \mathcal{G} -homomorphism.

Lemma 4.3. Let \mathcal{M} and \mathcal{M}' be Γ -rings and \mathcal{G} be a finite group which acts on \mathcal{M} and \mathcal{M}' . Let $f: \mathcal{M} \to \mathcal{M}'$ be a \mathcal{G} -homomorphism and A, B are IFSs of \mathcal{M} and \mathcal{M}' , respectively. Then (1) $f^{-1}(B^g) = (f^{-1}(B))^g, \forall g \in \mathcal{G}$;

(2)
$$f(A^g) = (f(A))^g, \forall g \in \mathcal{G}.$$

Proof. (1) Let $x \in \mathcal{M}$ and $g \in \mathcal{G}$ be any element. Then

$$f^{-1}(B^g)(x) = B^g(f(x)) = B((f(x))^g) = B(f(x^g))) = f^{-1}(B)(x^g) = (f^{-1}(B))^g(x)$$

Hence $f^{-1}(B^g) = (f^{-1}(B))^g, \forall g \in \mathcal{G}.$

(2) Let $y \in \mathcal{M}'$ and $g \in \mathcal{G}$ be any element. Then $f(A^g)(y) = (\mu_{f(A^g)}(y), \nu_{f(A^g)}(y))$. Now

$$\mu_{f(A^g)}(y) = \sup\{\mu_{A^g}(x) : f(x) = y\} = \sup\{\mu_A(x^g) : f(x) = y\}$$

$$= \sup\{\mu_A(x^g) : f(x^g) = y^g\}$$

$$= \mu_{f(A)}(f(x^g)) = \mu_{f(A)}((f(x))^g) = \mu_{(f(A))^g}(f(x)) = \mu_{(f(A))^g}(y).$$

Similarly, we can show that $\nu_{f(A^g)}(y) = \mu_{(f(A))^g}(y)$. Hence $f(A^g) = (f(A))^g, \forall g \in \mathcal{G}$.

Theorem 4.4. Let \mathcal{M} and \mathcal{M}' be Γ -rings and \mathcal{G} be a finite group which acts on \mathcal{M} and \mathcal{M}' . Let $f: \mathcal{M} \to \mathcal{M}'$ be a \mathcal{G} -homomorphism. If B is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M}' , then $f^{-1}(B)$ is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M} .

Proof. Let B be an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M}' . To show that $f^{-1}(B)$ is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M} . For this we show that $(f^{-1}(B))^g$ is an IFI of \mathcal{M} for all $g \in \mathcal{G}$. In view of Lemma 4.2(1), we show that $f^{-1}(B^g)$ is an IFI of \mathcal{M} for all $g \in \mathcal{G}$.

For
$$x, y \in \mathcal{M}, \gamma \in \Gamma$$
 and $g \in \mathcal{G}, f^{-1}(B^g)(x+y) = (\mu_{f^{-1}(B^g)}(x+y), \nu_{f^{-1}(B^g)}(x+y))$, where

$$\mu_{f^{-1}(B^g)}(x+y) = \mu_{B^g}\{f(x+y)\} = \mu_{B^g}\{f(x) + f(y)\}$$

$$\geq \min\{\mu_{B^g}(f(x)), \mu_{B^g}(f(y))\}$$

$$= \min\{\mu_{f^{-1}(B^g)}(x), \mu_{f^{-1}(B^g)}(y)\}.$$

Thus $\mu_{f^{-1}(B^g)}(x+y) \ge \min\{\mu_{f^{-1}(B^g)}(x), \mu_{f^{-1}(B^g)}(y)\}.$

Likewise, it can be established that $\nu_{f^{-1}(B^g)}(x+y) \leq \max\{\nu_{f^{-1}(B^g)}(x), \nu_{f^{-1}(B^g)}(y)\}$. Also, $f^{-1}(B^g)(x\gamma y) = (\mu_{f^{-1}(B^g)}(x\gamma y), \nu_{f^{-1}(B^g)}(x\gamma y))$, where

$$\mu_{f^{-1}(B^g)}(x\gamma y) = \mu_{B^g}\{f(x\gamma y)\} = \mu_{B^g}\{f(x)\gamma f(y)\}$$

$$\geq \max\{\mu_{B^g}(f(x)), \mu_{B^g}(f(y))\}$$

$$= \max\{\mu_{f^{-1}(B^g)}(x), \mu_{f^{-1}(B^g)}(y)\}.$$

Thus $\mu_{f^{-1}(B^g)}(x\gamma y) \ge \max\{\mu_{f^{-1}(B^g)}(x), \mu_{f^{-1}(B^g)}(y)\}.$

Likewise, it can be proved that $\nu_{f^{-1}(B^g)}(x\gamma y) \leq \min\{\nu_{f^{-1}(B^g)}(x), \nu_{f^{-1}(B^g)}(y)\}$. Therefore, $f^{-1}(B^g) = (f^{-1}(B))^g$ is an IFI of \mathcal{M} .

Hence $f^{-1}(B)$ is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M} .

Theorem 4.5. Let \mathcal{M} and \mathcal{M}' be Γ -rings and \mathcal{G} be a finite group which acts on \mathcal{M} and \mathcal{M}' . Let $f: \mathcal{M} \to \mathcal{M}'$ be a \mathcal{G} -epimorphism. If A is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M} which is constant on Ker f of \mathcal{M} , then f(A) is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M}' .

Proof. Let A be an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M} . To show that f(A) is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M}' . For this we show that $(f(A))^g$ is IFI of \mathcal{M}' for all $g \in \mathcal{G}$. In view of Lemma 4.2(2), we show that $f(A^g)$ is an IFI of \mathcal{M}' for all $g \in \mathcal{G}$.

Let $x', y' \in \mathcal{M}', \gamma \in \Gamma, g \in \mathcal{G}$. As f is epimorphism, therefore there exist $x, y \in \mathcal{M}$ such that f(x) = x' and f(y) = y'. Now, $f(A^g)(x' + y') = (\mu_{f(A^g)}(x' + y'), \nu_{f(A^g)}(x' + y'))$, where

$$\mu_{f(A^g)}(x'+y') = \mu_{f(A^g)}(f(x)+f(y)) = \mu_{f(A^g)}(f(x+y))$$

$$= \mu_{A^g}(x+y)$$

$$\geq \min\{\mu_{A^g}(x),\mu_{A^g}(y)\}$$

$$= \min\{\mu_{f(A^g)}(f(x)),\mu_{f(A^g)}(f(y))\}$$

$$= \min\{\mu_{f(A^g)}(x'),\mu_{f(A^g)}(y')\}.$$

Thus, $\mu_{f(A^g)}(x'+y') \ge \min\{\mu_{f(A^g)}(x'), \mu_{f(A^g)}(y')\}.$

Similarly, we can show that $\nu_{f(A^g)}(x' + y') \le \max\{\nu_{f(A^g)}(x'), \nu_{f(A^g)}(y')\}.$

Also, $f(A^g)(x'\gamma y') = (\mu_{f(A^g)}(x'\gamma y'), \nu_{f(A^g)}(x'\gamma y'))$, where

$$\mu_{f(A^g)}(x'\gamma y') = \mu_{f(A^g)}(f(x)\gamma f(y)) = \mu_{f(A^g)}(f(x\gamma y))$$

$$= \mu_{A^g}(x\gamma y)$$

$$\geq \max\{\mu_{A^g}(x), \mu_{A^g}(y)\}$$

$$= \max\{\mu_{f(A^g)}(f(x)), \mu_{f(A^g)}(f(y))\}$$

$$= \max\{\mu_{f(A^g)}(x'), \mu_{f(A^g)}(y')\}.$$

Thus, $\mu_{f(A^g)}(x'\gamma y') \ge \max\{\mu_{f(A^g)}(x'), \mu_{f(A^g)}(y')\}.$

Similarly, we can show that $\nu_{f(A^g)}(x'\gamma y') \leq \min\{\nu_{f(A^g)}(x'), \nu_{f(A^g)}(y')\}$. Therefore, $f(A^g)$ and so $(f(A))^g$ is an IFI of \mathcal{M}' . Hence f(A) is an intuitionistic fuzzy \mathcal{G} -ideal of \mathcal{M}' .

Theorem 4.6. Let \mathcal{M} and \mathcal{M}' be Γ -rings and \mathcal{G} be a finite group which acts on \mathcal{M} and \mathcal{M}' . Let $f: \mathcal{M} \to \mathcal{M}'$ be a \mathcal{G} -homomorphism. If P be an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M}' , then $f^{-1}(P)$ is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M} .

Proof. Since P be an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M}' so by Theorem 2.11 $f^{-1}(P)$ is also an intuitionistic fuzzy prime ideal of \mathcal{M} . So, it remains to show that $f^{-1}(P)$ is \mathcal{G} -invariant. For this consider $x \in \mathcal{M}, g \in \mathcal{G}$ be any elements. Then we have $\mu_{f^{-1}(P)}(x^g) = \mu_P(f(x^g)) = \mu_P((f(x))^g) = \mu_P((f(x))) = \mu_{f^{-1}(P)}(x)$. Likewise, it can be proved that $\nu_{f^{-1}(P)}(x^g) = \nu_{f^{-1}(P)}(x)$. Thus $f^{-1}(P)$ is \mathcal{G} -invariant. Hence $f^{-1}(P)$ is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M} .

Theorem 4.7. Let \mathcal{M} and \mathcal{M}' be Γ -rings and \mathcal{G} be a finite group which acts on \mathcal{M} and \mathcal{M}' . Let $f: \mathcal{M} \to \mathcal{M}'$ be a \mathcal{G} -epimorphism. If P is an intuitionistic fuzzy \mathcal{G} -prime ideal which is constant on Kerf of \mathcal{M} , then f(P) is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M}' .

Proof. Since P be an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M} which is constant on Kerf of \mathcal{M} so by Theorem 2.11 f(P) is also an intuitionistic fuzzy prime ideal of \mathcal{M}' . So, it remains to show that f(P) is \mathcal{G} -invariant. For this consider $y \in \mathcal{M}', g \in \mathcal{G}$ be any element. As f is an epimorphism so, there exists $x \in \mathcal{M}$ such that f(x) = y. Then we have

$$\mu_{f(P)}(y^g) = \mu_{(f(P))^g}(y) = \mu_{f(P^g)}(y) = \mu_{P^g}(f^{-1}(y)) = \mu_{P^g}(x) = \mu_P(x^g) = \mu_P(x) = \mu_P(f^{-1}(y)) = \mu_{f(P)}(y)$$
. Similarly, we can show that $\nu_{f(P)}(y^g) = \nu_{f(P)}(y)$. Thus $f(P)$ is \mathcal{G} -invariant. Hence $f(P)$ is an intuitionistic fuzzy \mathcal{G} -prime ideal of \mathcal{M}' .

References

- [1] Atanassov, K. T. (1983). Intuitionistic fuzzy sets. *In: Sgurev, V. (Ed.). VII ITKR's Session*. Deposited in: Central Science and Technology Library of the Bulgarian Academy of Sci, Sofia. Reprinted: *Int. J. Bioautomation*, 2016, 20(S1), S1–S6.
- [2] Atanassov, K. T. (1986). Intuitionistic fuzzy Sets. Fuzzy Sets and Systemts, 20(1), 87–96.
- [3] Barnes, W. E. (1966). On the Γ -rings of Nobusawa. *Pacific Journal of Mathematics*, 18, 411–422.
- [4] Kim, K. H., Jun, Y. B., & Ozturk, M. A. (2001). Intuitionistic fuzzy Γ-ideals of Γ-rings. *Scienctiae Mathematicae Japonicae Online*, 4, 431–440.
- [5] Kyuno, S. (1978). On prime gamma rings. *Pacific Journal of Mathematics*, 75(1), 185–190.
- [6] Kyuno, S. (1982). Prime ideals in gamma rings. *Pacific Journal of Mathematics*, 98(2), 375–379.
- [7] Lee, D. S., & Park, C. H. (2006). Group action on intuitionistic fuzzy ideals of rings. *East Asian Mathematical Journal*, 22(2), 239–248.
- [8] Lorenz, M., & Passman, D. S. (1979). Prime ideals in crossed products of finite groups. *Israel Journal of Mathematics*, 32(2), 89–132.
- [9] Montgomery, S. (1980). Fixed Rings of Finite Automorphism Groups of Associative Rings. Springer Berlin, Heidelberg.

- [10] Nobusawa, N. (1964). On a generalization of the ring theory. *Osaka Journal of Mathematics*, 1(1), 81–89.
- [11] Palaniappan, N., & Ramachandran, M. (2010). A note on characterization of intuitionistic fuzzy ideals in Γ-rings. *International Mathematical Forum*, 5(52), 2553–2562.
- [12] Palaniappan, N., & Ramachandran, M. (2011). Intuitionistic fuzzy prime ideals in Γ-rings. *International Journal of Fuzzy Mathematics and Systems*, 1(2), 141–153.
- [13] Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2010). Characterization of intuitionistic fuzzy ideals of Γ-rings. *Applied Mathematical Sciences*, 4(23), 1107–1117.
- [14] Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of intuitionistic fuzzy ideals of Γ-rings. *Thai Journal of Mathematics*, 9(2), 305–318.
- [15] Paul, R. (2015). On various types of ideals of Γ -rings and the corresponding operator rings. *International Journal of Engineering Research and Applications*, 5(8) 95–98.
- [16] Sharma, P. K., & Lata, H. (2022). Intuitionistic fuzzy characteristic ideals of a Γ-ring. *South East Asian Journal of Mathematics and Mathematical Sciences*, 18(1), 49–70.
- [17] Sharma, P. K., Lata, H., & Bharadwaj, N. (2022). On intuitionistic fuzzy structure space on Γ-ring. *Creative Mathematics and Informatics*, 31(2), 215–228.
- [18] Sharma, P. K., Lata, H., & Bhardwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of Γ-ring. *Creative Mathematics and Informatics*, 32(1), 69–86.
- [19] Sharma, P. K., Lata, H., & Bharadwaj, N. (2024). Decomposition of intuitionistic fuzzy primary ideal of Γ -ring. *Creative Mathematics and Informatics*, 33(1), 65–75.
- [20] Warsi, Z. K. (1978). On decomposition of primary ideals of Γ -rings. *Indian Journal of Pure and Applied Mathematics*, 9(9), 912–917.
- [21] Zadeh, L. A. (1965). Fuzzy sets. *Information and Control*, 8, 338–353.