Title of paper:
|
Generalized negations and intuitionistic fuzzy sets - a criticism to a widely used terminology
|
Author(s):
|
Gianpiero Cattaneo
|
Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano–Bicocca, Via Bicocca degli Arcimboldi 8, I–20126 Milano, Italy
|
cattang@disco.unimib.it
|
Davide Ciucci
|
Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano–Bicocca, Via Bicocca degli Arcimboldi 8, I–20126 Milano, Italy
|
ciucci@disco.unimib.it
|
|
Presented at:
|
3rd Conference of the European Society for Fuzzy Logic and Technology, Zittau, Germany, September 10-12, 2003
|
Published in:
|
Conference proceedings, pages 147-152
|
Download:
|
PDF (103 Kb, File info)
|
Abstract:
|
Intuitionistic Fuzzy Sets Theory is based on a wrong nominalistic (terminological) assumption. It is defined as “intuitionistic” a negation which does not satisfy usual properties of the intuitionistic Brouwer negation, but it is called with this term only a particular generalized notion of negation which indeed corresponds to the de Morgan negation. This metatheoretical assumption is criticized and the role of different generalized negations is discussed.
|
Keywords:
|
Brouwer negation, Kleene negation, intuitionistic fuzzy sets, HW algebras.
|
References:
|
- K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87–96.
- G. Cattaneo and D. Ciucci, Heyting Wajsberg algebras as an abstract environment linking fuzzy and rough sets, LNAI, vol. 2475, Springer, 2002, pp. 77–84.
- G. Cattaneo and D. Ciucci, Intuitionistic fuzzy sets or orthopair fuzzy sets?, EUSFLAT`03, 2003, 153-158.
- G. Cattaneo and G. Nistico, Brouwer-Zadeh posets and three valued Lukasiewicz posets, Fuzzy Sets Syst. 33 (1989), 165–190.
- A. Church, On the law of excluded middle, Bull. Amer. Math. Soc. 34 (1928), 75–78.
- J.M. Dunn, Relevance logic and entailment, Handbook of Philosophical Logic (D. Gabbay and F. Guenther, eds.), vol. 3, Kluwer, 1986.
- S. Haack, Philosophy of logics, Cambridge University Press, 1978.
- A. A. Monteiro, Sur les algebres de Heyting symetriques, Portugaliae Mathematica 39 (1980), 1–237.
- S. Surma, Logical works, Polish Academy of Sciences, Wroclaw, 1977.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|