As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Finite intuitionistic fuzzy machines

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/9/3/40-45
Title of paper: Finite intuitionistic fuzzy machines
Author(s):
Ketty Peeva
Faculty of Applied Mathematics and Informatics, Technical University of Sofia, Sofia 1000, P.O.Box 384, BULGARIA
kgp@tu-sofia.bg
Presented at: Seventh International Conference on IFSs, Sofia, 23-24 August 2003
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 9 (2003) Number 3, pages 40-45
Download:  PDF (3665  Kb, File info)
Abstract: We define finite intuitionistic fuzzy machines and investigate their behavior.
Keywords: Finite intuitionistic fuzzy machine.
References:
  1. J. Adamek and W. Wechler, Minimization of R-fuzzy automata, in: Studien zur Algebra und Ihre Anwendungen, Akademie-Verlag, Berlin, 1976.
  2. K. Atanassov, /ntuitionistic Fuzzy Sets, Theory and Applications, Physica-Verlag, 1999.
  3. D. S. Malik and J. N. Mordeson, Fuzzy Discrete Structures, Springer-Verlag, 2000.
  4. J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages — Theory and Applications, CAPMAN&HALL/CRC, London, 2002.
  5. A. Paz, Introduction to Probabilistic Automata, Academic Press, New York/London, 1971.
  6. K. Peeva, Behaviour, reduction and minimization of finite L-automata, Fuzzy Sets and Systems, 28 (2) (1988) 171 - 181.
  7. K. Peeva, Equivalence, reduction and minimization of finite automata over semirings, Theoretical Computer Science, 88 (1991) 269-285.
  8. K. Peeva, Finite L-Fuzzy Machines, Fuzzy Sets and Systems (accepted).
  9. K. Peeva, Methods and Algorithms for solving fuzzy linear systems — Applications in Artificial Intelligence Areas. Dr. Sc. Thesis, Technical University of Sofia (2002).
  10. K. Peeva and P. Nedyalkova, Reduction and minimization of fuzzy automata (Bulgarian), Godishnik Viss. Uchebn. Zaved. Prilozhna Mat t. 17 book. 1 (1981) 29-39.
  11. K. Peeva and Y. Kyosev, Software for direct and inverse problem resolution in intuitionistic fuzzy relational calculus Second International Workshop on IFS and Generalized Nets, Warsaw, 26-27 July 2002, 60-68.
  12. S. Santos, Maximin automata, Jnformation and Control, 13 (1968) 363-377.
  13. E. S. Santos, Maximin, minimax and composite sequential mashines, J. Math. Anal. Appl, 24 (1968) 246-259.
  14. E. S. Santos, On reduction of maxi-min machines, J. Math. Anal. Appl., 40 (1972) 60-78.
  15. E. Santos, Max-product machines, Journal of Math. Anal. And Applications, 37 (1972) 677-686.
  16. E. S. Santos and W. G. Wee, General formulation of sequential machines, Information and Control, 12(1) (1968) 5-10.
  17. P. Starke, Abstract Automata, Academic Press, New York, 1978. Second edition, Birkhaeuser, Basel, 1998.
  18. V. Topencharov and K. Peeva, Equivalence, reduction and minimization of finite fuzzy automata, Journal of Math. Anal. And Appl., 84 (1981) 270 - 281.
  19. W. Wechler, R-Fuzzy Automata with a time-variant structure, Mathematical Foundations of Computer Science, 3rd Symposium, LNCS, Vol. 28, Springer (1975) 73-76.
  20. W. Wechler, Zhe Concept of Fuzziness in Automata and Language Theory, Akademie Verlag, 1978.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.