Title of paper:
|
Componentwise decomposition of intuitionistic L-fuzzy integrals and interval-valued intuitionistic fuzzy integrals
|
Author(s):
|
Adrian Ban
|
Department of Mathematics and Informatics, University of Oradea, Universităţii 1, 410087 Oradea, Romania
|
aiban@uoradea.ro
|
Ioan Fechete
|
Department of Mathematics and Informatics, University of Oradea, Universităţii 1, 410087 Oradea, Romania
|
ifechete@uoradea.ro
|
|
Presented at:
|
11th ICIFS, Sofia, Bulgaria, 28-30 April 2007
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 13 (2007) Number 2, pages 1—7
|
Download:
|
PDF (141 Kb, File info)
|
Abstract:
|
We prove a componentwise decomposition theorem of an intuitionistic L-fuzzy integral to its L- fuzzy integrals components, where L is a complete lattice with negation, and a componentwise decomposition theorem of an interval-valued intuitionistic fuzzy integral to its interval-valued fuzzy integrals components.
|
References:
|
- O. Arieli, C. Cornelis, G. Deschrijver, E. E. Kerre, Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices, in: Applied Computational Intelligence (D. Ruan, P. D’hondt, M. De Cock, M. Nachtegael, E. E. Kerre, Eds.), World Scientific, Singapore, 2004, pp. 57-64.
- K. T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Verlag, Heidelberg, New York, 1999.
- K. T. Atanassov, S. Stoeva, Intuitionistic L-fuzzy sets, Cybernetics and Systems Research, 2 (1984), 539-540.
- K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343-349.
- A. Ban, I. Fechete, Componentwise decomposition of some lattice-valued fuzzy integrals, Information Sciences, 177 (2007), 1430-1440.
- A. I. Ban, Intuitionistic Fuzzy Measures: Theory and Applications, Nova Science, New York, 2006.
- D. Çoker, Fuzzy rough sets are intuitonistic L-fuzzy sets, Fuzzy Sets and Systems, 96 (1998), 381-383.
- G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
- J. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967), 145-174.
- M. Gorzalczany, Interval-valued fuzzy inference method-some basic properties, Fuzzy Sets and Systems, 31 (1989), 243-251.
- M. Grabisch, The symmetric Sugeno integral, Fuzzy Sets and Systems, 139 (2003), 473-490.
- M.Ming, H. Haiping, The abstract (S) fuzzy integrals, Journal of Fuzzy Mathematics, 1 (1993), 89-107.
- S. Nanda, S. Majumdar, Fuzzy rough sets, Fuzzy Sets and Systems, 45 (1992), 157-160.
- M. Sugeno, Theory of fuzzy integrals and its applications, Ph. D. Thesis, Tokyo Institute of Technology, 1974.
- T. K. Mondal, S. K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 119 (2001), 483-494.
- R. Tcvetkov, Extended Sugeno integrals and integral topological operators over intuitionistic fuzzy sets, First Int. Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, London, 6-7 Sept. 2006, pp. 132-144.
- G-J. Wang, Y-Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems, 110 (2000), 271-274.
- Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
- G-Q. Zhang, X-L. Meng, Lattice-valued fuzzy integrals of lattice-valued functions with respect to lattice-valued fuzzy measure, Journal of Fuzzy Mathematics, 1(1993), 53-68.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|