Title of paper:
|
Common fixed point theorems in ϵ-chainable intuitionistic fuzzy metric spaces
|
Author(s):
|
M. Jeyaraman
|
PG and Research Department of Mathematics, Raja Doraisingam Govt. Arts College, Sivagangai, Tamil Nadu, India
|
jeya.math@gmail.com
|
N. Nagarajan
|
Department of Basic Engineering, St. Joseph Polytechnic College, Tirumayam, Pudukkottai, Tamil Nadu, India
|
nagarajanmed@gmail.com
|
Saurabh Manro
|
School of Mathematics and Computer Applications, Thapar University, Patiala, Punjab, India
|
sauravmanro@hotmail.com
|
|
Published in:
|
"Notes on Intuitionistic Fuzzy Sets", Volume 20, 2014, Number 3, pages 42-52
|
Download:
|
PDF (184 Kb, File info)
|
Abstract:
|
In this paper, we prove a common fixed point by using a new notion of absorbing maps in ϵ-chainable intuitionistic fuzzy metric space with reciprocal continuity and semicompatible maps. Ours result generalizes results of Ranadive et al. [10, 11], A. Jain et al. [6], Y. Bano et al. [4] and M. Verma et al. [13] in intuitionistic fuzzy metric spaces.
|
Keywords:
|
Absorbing maps, Semi-compatible mapping, Reciprocal continuity, Intuitionistic fuzzy metric space.
|
AMS Classification:
|
54H25, 47H10.
|
References:
|
- Alaca, C., D. Turkoglu, C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, Vol. 29, 2006, 1073–1078.
- Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, 87–96.
- Atanassov, K. New operations defined over the intuitionistic fuzzy set, Fuzzy Sets and Systems, Vol. 61, 1994, 137–142.
- Bano, Y., R. S. Chandel, Common fixed point theorem in Intuitionistic fuzzy metric space using absorbing maps, Int. J. Contemp. Math. Sciences, Vol. 5, 2010, No. 45, 2201–2209.
- George, A., P. Veermani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 64, 1994, 395–399.
- Jain, A., M. Singh, S. Aziz, Fixed point theorems in fuzzy metric spaces via absorbing maps, IJRRAS, Vol. 16, 2013, No. 2, 241–245.
- Kramosil, O., J. Michelak, Fuzzy metric and statistical metric space, Kybernetika, Vol. 11, 1975, 326–334.
- Manro, S., S. Kumar, S. Singh, Common fixed point theorems in intuitionistic fuzzy metric spaces, Applied Mathematics,1(1)(2010), 510–514.
- Park, J. H. Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, Vol. 22, 2004, 1039–1046.
- Ranadive, A. S., A. P. Chouhan, Fixed point theorems in ϵ-chainable fuzzy metric spaces via absorbing maps, Annals of Fuzzy Mathematics and Informatics, Vol. 1, 2011, No. 1, 45–53.
- Ranadive, A. S., A. P. Chouhan, Absorbing maps and fixed point theorems in fuzzy metric spaces, International Mathematical Forum, Vol. 5, 2010, No. 10, 493–502.
- Turkoglu, D., C. Alaca, Y. J. Cho, C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Appl. Math. & Computing, Vol. 22, 2006, Issue 1–2, 411–424.
- Verma, M., R. S. Chandel, Common fixed point theorem for four mappings in intuitionistic fuzzy metric space using absorbing maps, IJRRAS, Vol. 10, 2012, Issue 2, 286–291.
- Zadeh, L. A. Fuzzy sets, Information and Control, Vol. 8, 1965, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|