As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Common coupled fixed point theorems in generalized intuitionistic fuzzy metric spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/23/1/57-69
Title of paper: Common coupled fixed point theorems in generalized intuitionistic fuzzy metric spaces
Author(s):
R. Muthuraj
PG and Research Department of Mathematics, H. H. The Rajah’s College, Pudukkottai – 622 001, India
rmr1973@gmail.com
M. Sornavalli
Department of Mathematic, Velammal College of Engineering and Technology, Madurai – 625 009, India
sornavalliv7@gmail.com
M. Jeyaraman
PG and Research Department of Mathematics, Raja Duraisingam Govt. Arts College, Sivagangai – 630 561, India
jeya.math@gmail.com
Presented at: 4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, 3–7 May 2017, Mersin, Turkey
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 1, pages 57—69
Download:  PDF (157 Kb  Kb, File info)
Abstract: In this paper the notion of generalized intuitionistic fuzzy metric space by using the idea of intuitionistic fuzzy set due to Atanassov. Some coupled coincidence point results for compatibility of two mappings. We prove two unique common coupled fixed point theorems for Junck type and for three mapping in symmetric generalized intuitionistic fuzzy metric spaces.
Keywords: t-norm, t-conorm, Coupled coincidence point, Compatible mappings, Generalized intuitionistic metric space.
AMS Classification: 47H10, 54H25.
References:
  1. Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  2. Choudhury, B. S., & Maity, P. (2011). Coupled fixed point results in generalized metric spaces, Mathematics Computational Model, 54, 73–79.
  3. Dhage, B. C. (1992). Generalized metric spaces and mappings with fixed point, Bulletin of Calcutta Mathematical Society, 84(4), 329–336.
  4. George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces, Fuzzy sets and Systems, 395–399.
  5. Hu, X. Q. (2011). Common fixed point theorems for contractive mappings in fuzzy metric spaces, Fixed Point Theory Applications, Article ID 363716.
  6. Park, J. H. (2004). Intuitionstic fuzzy metric spaces, Chaos Solitons Fractals, 22, 1039–1046.
  7. Mustafa, Z. & Sims, B. (2003). Some remarks concerning D-metric spaces, Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, 189–198.
  8. Mustafa, Z., & Sims, B. (2006). A new approach to generalized metric spaces, Journal of Non-linear and Convex Analysis, 7(2), 289–297.
  9. Mustafa, Z., & Sims, B. (2009). Fixed point theorems for contractive mappings in compute G-metric spaces, Fixed point theory and applications, Article ID 917175, 10 pages.
  10. Rao, K. P. R., Altun, I. & Bindu, S. H. (2011). Common coupled fixed point theorem in generalized fuzzy metric spaces, Advanced Fuzzy System, Article ID 986748, 6 pages.
  11. Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On convergent sequences and fixed point theorems in D-metric space, International Journal of Mathematics and Mathematical sciences, 12, 1969–1988.
  12. Sintunavarat, W., & Kumam, P. (2012). Fixed point theorems for a generalized intuitionstic fuzzy contraction in intuitionstic fuzzy metric spaces, Thai Journal of Mathematics, 10(1), 123–135.
  13. Sintunavarat,W., Kumam, P., & Petrusel,W. (2012). Common coupled fixed point theorems for W*-compatible mappings without mixed monotone property. Rend. Circ. Mat. Palermo, 61, 361–383.
  14. Sun, G., & Yang, K. (2010). Generalized fuzzy metric spaces with properties. Research Journal of Application Science, 2(7), 673–678.
  15. Mohiuddine, S. A., & Alotaibi, A. (2013). Coupled coincidence point theorems for compatible mappings in partially ordered intuitionistic generealized fuzzy metric spaces, Fixed Point Theory and Applications. DOI: 10.1186/1687-1812-2013-265.
  16. Hu, X. Q., & Luo, Q. (2012). Coupled coincidence point theorems for contractions in generalized fuzzy metric spaces, Fixed point theory Applications, 196, DOI: 10.1186/1687-1812-2012-196.
  17. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.