As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Choquet and Sugeno integrals and intuitionistic fuzzy integrals as aggregation operators

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/23/1/95-99
Title of paper: Choquet and Sugeno integrals and intuitionistic fuzzy integrals as aggregation operators
Author(s):
Patricia Melin
Tijuana Institute of Technology,, Tijuana, Mexico
pmelin@tectijuana.mx
Gabriela E. Martinez
Tijuana Institute of Technology,, Tijuana, Mexico
Radoslav Tsvetkov
Technical University of Sofia, Sofia, Bulgaria
rado_tzv@tu-sofia.bg
Presented at: 4th International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference, 3–7 May 2017, Mersin, Turkey
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 23, 2017, Number 1, pages 95—99
Download:  PDF (157 Kb  Kb, File info)
Abstract: In this paper, a comparison of the Choquet and Sugeno integrals is presented and discussed in their fuzzy and intuitionistic fuzzy set forms.
Keywords: Aggregation operators, Choquet integral, Sugeno integral, Modular neural networks, Fuzzy measures, Fuzzy densities.
AMS Classification: 03E72.
References:
  1. Zadeh, L. A. (1965). Fuzzy sets. Inform Control, 338–353.
  2. Sugeno, M. (1974). Theory of fuzzy integrals and its applications, Doctoral Thesis, Tokyo Institute of Technology.
  3. Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier, Grenoble 5, 131–295.
  4. Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin, 2012.
  5. Yager, R. (2008). A knowledge-based approach to adversarial decision making Int. J. Intell. Syst., 23(1), 1–21.
  6. Klir, G. (2005). Uncertainty and Information. Hoboken, NJ: Wiley.
  7. Bezdek, J. C., Keller, J., & Pal, N. R. (2005). Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. New York: Springer-Verlag.
  8. Mendez-Vazquez, A., Gader, P., Keller, J. M., & Chamberlin, K. (2008). Minimum classification error training for Choquet integrals with applications to landmine detection, IEEE Trans. Fuzzy Syst. 16(1), 225–238.
  9. Torra, V., & Narukawa, Y. Modeling Decisions, Information Fusion and Aggregation Operators. Heidelberg, Germany: Springer-Verlag, 2007.
  10. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., & Gelzinis, A. (1999). Soft combination of neural classifiers: A comparative study, Pattern Recognition Letter, 20(4), 429–444.
  11. Atanassov, K., Vassilev, P., & Tsvetkov, R. (2013). Intuitionistic Fuzzy Sets, Measures and Integrals. “Prof. M. Drinov” Academic Publishing House, Sofia.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.