As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Cartesian product of intuitionistic fuzzy subgroups

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/31/2/207-216
Title of paper: Cartesian product of intuitionistic fuzzy subgroups
Author(s):
Saman Abdurrahman     0000-0001-9120-5922
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, South Kalimantan 70714, Indonesia
saman@ulm.ac.id
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 2, pages 207–216
DOI: https://doi.org/10.7546/nifs.2025.31.2.207-216
Download:  PDF (197  Kb, File info)
Abstract: Fuzzy sets have become fundamental tools for addressing uncertainty and ambiguity across a wide range of scientific disciplines. A significant development within fuzzy set theory is the emergence of fuzzy subgroups, which adapt fuzzy set principles to the context of group theory. This research introduces the Cartesian product of two (or more) intuitionistic fuzzy subgroups and analyzes the characterization of this Cartesian product within the framework of intuitionistic fuzzy subgroups. Furthermore, we investigated various properties of this concept, aiming to make a significant contribution to the understanding of the interplay between these concepts and thus paving the way for new applications in fuzzy algebra and related fields.
Keywords: Fuzzy sets, Fuzzy subgroup, Cartesian product, Intuitionistic fuzzy subgroup.
AMS Classification: 03E72, 08A72, 20N25.
References:
  1. Abdullah, S., Davvaz, B., & Aslam, M. (2011). (α, β)-intuitionistic fuzzy ideals of hemirings. Computers & Mathematics with Applications, 62(8), 3077–3090.
  2. Abdurrahman, S. (2022). Pengantar Struktur Aljabar: Teori Grup. Kalam Emas.
  3. Abdurrahman, S. (2023). Cross product of ideal fuzzy semiring. Barekeng: Journal of Mathematics and Its Application, 17(2), 1131–1138.
  4. Abdurrahman, S., Thresye, Arif, A. H., & Zahroo, R. D. (2024). Cartesian Product of Fuzzy Subsemiring, Proceeding of the 7th National Conference on Mathematics and Mathematics Education (SENATIK), 26 November 2022, Semarang, Indonesia, 3046(1), Article 020006.
  5. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal Bioautomation, 20(1), S1–S6.
  6. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  7. Atanassov, K. T., & Stojanova, D. (1990). Cartesian products over intuitionistic fuzzy sets. Methodology of Mathematical Modelling, Vol. 1, Sofia, 296–298.
  8. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
  9. Atanassov, K. T. (2012). On the Concept of Intuitionistic Fuzzy Sets. In: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
  10. Biswas, R. (1990). Fuzzy subgroups and anti fuzzy subgroups. Fuzzy Sets and Systems, 35(1), 121–124.
  11. Biswas, R. (1997). Intuitionistic fuzzy subgroups. Notes on Intuitionistic Fuzzy Sets, 3(2), 53–60.
  12. Deschrijver, G., & Kerre, E. (2001). On the Cartesian product of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 7(3), 14–22.
  13. Li, D.-Y., Zhang, C.-Y., & Ma, S.-Q. (2009). The intuitionistic anti-fuzzy subgroup in group G. In: Cao, B.-Y., Zhang, C.-Y., Li, T.-F. (Eds.). Fuzzy Information and Engineering, Advances in Soft Computing, vol 54, Springer, Berlin, Heidelberg, pp. 145–151.
  14. Onasanya, B. O., & Ilori, S. A. (2014). Some results in fuzzy and anti fuzzy group theory. International Journal of Mathematical Combinatorics, 1(2014), 1–5.
  15. Oqla Massa’deh, M. (2016). A study on intuitionistic fuzzy and normal fuzzy M-subgroup, M-homomorphism and isomorphism. International Journal of Industrial Mathematics, 8(3), 185–188.
  16. Palanivelrajan, M., Gunasekaran, K., & Kaliraju, K. (2014). Cartesian products over intuitionistic fuzzy number subgroups. Notes on Intuitionistic Fuzzy Sets, 20(1), 1–8.
  17. Rosenfeld, A. (1971). Fuzzy groups. Journal of Mathematical Analysis and Applications, 35(3), 512–517.
  18. Yasir, A., Abdurrahman, S., & Huda, N. (2016). Anti subgrup fuzzy. Jurnal Matematika Murni dan Terapan Epsilon, 10(2), 48–54.
  19. Yuan, X.-H., Li, H.-X., & Lee, E. S. (2010). On the definition of the intuitionistic fuzzy subgroups. Computers and Mathematics with Applications, 59(9), 3117–3129.
  20. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.