As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Bondage and non-bondage sets in regular intuitionistic fuzzy graphs

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/29/3/318-324
Title of paper: Bondage and non-bondage sets in regular intuitionistic fuzzy graphs
Author(s):
R. Buvaneswari
Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore – 641 008, Tamilnadu, India
buvanaamohan@gmail.com
K. Umamaheswari
Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore – 641 008, Tamilnadu, India
ragavumahesh@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 3, pages 318–324
DOI: https://doi.org/10.7546/nifs.2023.29.3.318-324
Download:  PDF (256  Kb, File info)
Abstract: The concept of strong edges in domination set and its properties are discussed. The increasing or reducing domination numbers using cardinality are also studied. Bondage [math]\displaystyle{ (\alpha(G)) }[/math] and non-bondage [math]\displaystyle{ (\alpha_K(G)) }[/math] sets are defined in regular intuitionistic fuzzy graph. The properties of bondage and non-bondage number of intuitionistic fuzzy graph analyzed. A minimum 2-bondage set [math]\displaystyle{ X }[/math] of an intuitionistic fuzzy graph (IFG) [math]\displaystyle{ G }[/math] is a bondage set of regular intuitionistic fuzzy graph in [math]\displaystyle{ G }[/math].
Keywords: Intuitionistic fuzzy graph (IFG), Regular IFG, Strong edge, Bondage [math]\displaystyle{ (\alpha(G)) }[/math], Non-bondage [math]\displaystyle{ (\alpha_K(G)) }[/math], Domination numbers, Cardinality of domination sets.
AMS Classification: 03E72, 05C07, 05C69.
References:
  1. Atanassov K. T. (1983). Intuitionistic Fuzzy Sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6 (in English).
  2. Shannon A., Atanassov K. (1994). A first step to a theory of the intuitionistic fuzzy graphs, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 59–61.
  3. Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physical-Verlag, New York.
  4. Berge, C. (1962). Theory of Graphs and Applications. Translated by Alison Doig. Methuen Co. Ltd., London.
  5. Cockayne, E. J., & Hedetniemi, S. T. (1977). Towards a theory of domination in graphs. Networks, 7, 247–261.
  6. Fink, J. F., Jacobson, M. S, Kinch L. F., & Roberts J. (1990). The bondage number of a graph. Discrete Mathematics, 86 (1–3), 47–57.
  7. Karunambigai, M. G., & Parvathi, R. (2006). Intuitionistic fuzzy graphs. Advances in Soft Computing: Computational Intelligence, Theory and Applications, Springer-Verlag, 139–150.
  8. Karunambigai, M. G., Parvathi, R., & Buvaneswari, R. (2012). Arcs in Intuitionistic Fuzzy Graphs. Notes on Intuitionistic Fuzzy Sets, 18(4), 48–58.
  9. Krzywkowski (2012). The concept of 2-bondage number in graph theory, 1–16. Physica-Verlag, New York.
  10. Rosenfeld, A. (1975). Fuzzy Graphs, Fuzzy Sets and Their Applications to Cognitive and Decision Processes. Academic Press, Cambridge, MA, USA.
  11. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.