Title of paper:
|
Bondage and non-bondage sets in regular intuitionistic fuzzy graphs
|
Author(s):
|
R. Buvaneswari
|
Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore – 641 008, Tamilnadu, India
|
buvanaamohan@gmail.com
|
K. Umamaheswari
|
Department of Mathematics, Sri Krishna Arts and Science College, Coimbatore – 641 008, Tamilnadu, India
|
ragavumahesh@gmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 3, pages 318–324
|
DOI:
|
https://doi.org/10.7546/nifs.2023.29.3.318-324
|
Download:
|
PDF (256 Kb, File info)
|
Abstract:
|
The concept of strong edges in domination set and its properties are discussed. The increasing or reducing domination numbers using cardinality are also studied. Bondage [math]\displaystyle{ (\alpha(G)) }[/math] and non-bondage [math]\displaystyle{ (\alpha_K(G)) }[/math] sets are defined in regular intuitionistic fuzzy graph. The properties of bondage and non-bondage number of intuitionistic fuzzy graph analyzed. A minimum 2-bondage set [math]\displaystyle{ X }[/math] of an intuitionistic fuzzy graph (IFG) [math]\displaystyle{ G }[/math] is a bondage set of regular intuitionistic fuzzy graph in [math]\displaystyle{ G }[/math].
|
Keywords:
|
Intuitionistic fuzzy graph (IFG), Regular IFG, Strong edge, Bondage [math]\displaystyle{ (\alpha(G)) }[/math], Non-bondage [math]\displaystyle{ (\alpha_K(G)) }[/math], Domination numbers, Cardinality of domination sets.
|
AMS Classification:
|
03E72, 05C07, 05C69.
|
References:
|
- Atanassov K. T. (1983). Intuitionistic Fuzzy Sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6 (in English).
- Shannon A., Atanassov K. (1994). A first step to a theory of the intuitionistic fuzzy graphs, Proc. of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 59–61.
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physical-Verlag, New York.
- Berge, C. (1962). Theory of Graphs and Applications. Translated by Alison Doig. Methuen Co. Ltd., London.
- Cockayne, E. J., & Hedetniemi, S. T. (1977). Towards a theory of domination in graphs. Networks, 7, 247–261.
- Fink, J. F., Jacobson, M. S, Kinch L. F., & Roberts J. (1990). The bondage number of a graph. Discrete Mathematics, 86 (1–3), 47–57.
- Karunambigai, M. G., & Parvathi, R. (2006). Intuitionistic fuzzy graphs. Advances in Soft Computing: Computational Intelligence, Theory and Applications, Springer-Verlag, 139–150.
- Karunambigai, M. G., Parvathi, R., & Buvaneswari, R. (2012). Arcs in Intuitionistic Fuzzy Graphs. Notes on Intuitionistic Fuzzy Sets, 18(4), 48–58.
- Krzywkowski (2012). The concept of 2-bondage number in graph theory, 1–16. Physica-Verlag, New York.
- Rosenfeld, A. (1975). Fuzzy Graphs, Fuzzy Sets and Their Applications to Cognitive and Decision Processes. Academic Press, Cambridge, MA, USA.
- Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|