As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:A study on intuitionistic fuzzy topological spaces

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/9/1/01-32
Title of paper: A study on intuitionistic fuzzy topological spaces
Author(s):
Tapas Kumar Mondal
Department of Mathematics, Kurseong College, Kurseong, West Bengal, India
S. K. Samanta
Department of Mathematics, Visva Bharati, Santiniketan-731235, West Bengal, India
syamal_123@yahoo.co.in
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 9 (2003) Number 1, pages 1-32
Download:  PDF (305  Kb, File info)
Abstract: In this paper we introduce concepts of intuitionistic fuzzy gradation of bases and subbases of intuitionistic gradation of openness. We introduce intuitionistic gradation of neighbourhoodness, q-neighbourhoodness, intuitionistic fuzzy closure operator and intuitionistic fuzzy interior operator and their properties.
Keywords: Fuzzy topology, Fuzzy topological space, Intuitionistic gradation of openness, Intuitionistic gradation of closedness, Intuitionistic fuzzy sets, Intuitionistic fuzzy topological space, Intuitionistic fuzzy closure operator, Intuitionistic fuzzy interior operator
References:
  1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986) 87-96.
  2. K. T. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (2) (1993) 131-142.
  3. K. T. Atanassov, G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (3) (1989) 343-349.
  4. K. T. Atanassov, S. Stoeva, Intuitionistic fuzzy sets. Proc. of Polish Symp. on Interval and Fuzzy Mathematics, Poznan, August 1983, p. 23-26
  5. P. Burillo, H. Bustince, Two operators on interval-valued intuitionistic fuzzy sets: Part 2. C.R. Acad. Bulg. Sci. 48(1)(1995) 17-20.
  6. H. Bustince, P. Burillo, Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 74 (1995) 237-244
  7. C.L.Chang, Fuzzy Topological Spaces. J. Math. Anal. Appl. 24 (1968) 182-190
  8. K.C. Chattopadhyay, R.N.Hazra, S.K.Samanta. Gradation of openness: Fuzzy topology. Fuzzy Sets and Systems 49 (1992) 237-242
  9. K.C. Chattopadhyay, S.K.Samanta. Fuzzy closure operator, fuzzy compactness and fuzzy compactedness. Fuzzy Sets and Systems 54 (1993) 207-212
  10. D.Çoker, M. Demirci. An introduction to intuitionistic fuzzy topological spaces in Sostak's sense. BUSEFAL 67 (1996) 67-76.
  11. M. Demirci. Neighbourhood structures of smooth topological spaces. Fuzzy sets and systems 92 (1997) 123-128
  12. U. Hohle. Upper semicontinuous fuzzy sets and applications. J. Math. Anal. Appl. 78 (1980) 659-673.
  13. Pu Pao-Ming and Liu Ying Ming. Fuzzy topology. I. Neighbourhood structure of a fuzzy point and Moor-Smith convergence. J. Math. Anal. Appl. 78 (1980) 571-599.
  14. W. Peeters. Subspaces of smooth fuzzy structures. Fuzzy sets and systems 104 (1999) 423-433.
  15. A.A.Ramadan. Smooth topological spaces. Fuzzy sets and systems 48 (1992) 371-375.
  16. S.K. Samanta, T.K. Mondal. On intuitionistic gradation of openness. Fuzzy sets and systems 131 (2002) 323-336.
  17. A. Sostak. On a fuzzy topological structure. Rend. Circ. Mat. Palermo: Supple. Ser. II (1985) 89-103.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.