Title of paper:
|
A study on intuitionistic fuzzy 2-absorbing primary ideals in Г-ring
|
Author(s):
|
P. K. Sharma
|
Post-Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
|
pksharma@davjalandhar.com
|
Hem Lata
|
Research Scholar, Lovely Professional University, Phagwara, Punjab, India
|
goyalhema1986@gmail.com
|
Nitin Bharadwaj
|
Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India
|
nitin.15903@lpu.co.in
|
|
Presented at:
|
25th ICIFS, Sofia, 9—10 September 2022
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 3, pages 280–292
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.3.280-292
|
Download:
|
PDF (235 Kb, File info)
|
Abstract:
|
In this paper, we initiate the study of a generalization of intuitionistic fuzzy primary ideals in Γ-ring by introducing intuitionistic fuzzy 2-absorbing primary ideals. We investigate the structural characteristics of intuitionistic fuzzy 2-absorbing primary ideals and study their properties.
|
Keywords:
|
2-absorbing ideal, 2-absorbing primary ideal, Intuitionistic fuzzy 2-absorbing primary ideal.
|
AMS Classification:
|
03F55, 08A72, 13A15, 13A99.
|
References:
|
- Atanassov, K. T. (1983). Intuitionistic fuzzy sets. In: Sgurev, V. (ed) VII ITKR’s session, Central Science and Technology Library of the Bulgarian Academy of Sciences, Sofia.
- Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75, 417–429.
- Badawi, A., Tekir, U., & Yetkin, E. (2014). On 2-absorbing primary ideals in commutative rings. Bulletin of the Australian Mathematical Society, 51(4), 1163–1173.
- Barnes, W. E. (1966). On the Γ-rings of Nobusawa. Pacific Journal of Mathematics, 18, 411–422.
- Elkettani, M. Y., & Kasem, A. (2016). On 2-absorbing δ-primary gamma ideal of Γ-ring. International Journal of Pure and Applied Mathematics, 106(2), 543–550.
- Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Mathematical Journal, 25, 19–41.
- Hur, K., Su, Y. J., & Kang, H. W. (2005). Intuitionistic fuzzy ideal of a ring. Journal of the Korean Society Of Mathematical Education, Series B: The Pure And Applied Mathematics, 12(3), 193–209.
- Kim, K. H., Jun, Y. B., & Ozturk, M. A. (2001). Intuitionistic fuzzy Γ-ideals of Γ-rings/ Scienctiae Mathematicae Japonicae Online, 4, 431–440.
- Kyuno, S. (1978). On prime gamma rings. Pacific Journal of Mathematics, 75(1), 185–190.
- Kyuno, S. (1982). Prime ideals in gamma rings. Pacific Journal of Mathematics, 98(2), 375–379.
- Nobusawa, N. (1964). On a generalization of the ring theory. Osaka Journal of Mathematics, 1(1), 81–89.
- Onar, S., Yavuz, S., Ersoy, B. A., & Hila, K. (2018). Intuitionistic fuzzy 2-absorbing semiprimary ideals of commutative rings. Journal of Discrete Mathematical Sciences and Cryptography, DOI: 10.1080/09720529.2021.1877406.
- Palaniappan, N., & Ramachandran, M. (2010). A note on characterization of intuitionistic fuzzy ideals in Γ-rings. International Mathematical Forum, 5(52), 2553–2562.
- Palaniappan, N., & Ramachandran, M. (2011). Intuitionistic fuzzy prime ideals in Γ-rings. International Journal of Fuzzy Mathematics and Systems, 1(2), 141–153.
- Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2010). Characterization of intuitionistic fuzzy ideals of Γ-rings. Applied Mathematical Sciences, 4(23), 1107–1117.
- Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of Intuitionistic fuzzy ideals of Γ-rings. Thai Journal of Mathematics, 9(2), 305–318.
- Paul, R. (2015). On various types of ideals of Γ-rings and the corresponding operator rings. International Journal of Engineering Research and Applications, 5(8), 95–98.
- Ramachandran, M. (2010). Some characterization of intuitionistic fuzzy ideals in Γ-rings [Doctoral dissertation, Algappa University]. Shodhganga Repository. http://hdl.handle.net/10603/56561.
- Sharma, P. K., & Lata, H. (2022). Intuitionistic fuzzy characteristic ideals of a Γ-ring. South East Asian Journal of Mathematics and Mathematical Sciences, 18(1), 49–70.
- Sharma, P. K., Lata, H., & Bhardwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of Γ-ring. Creative Mathematics and Informatics, 32(1) (to appear).
- Warsi, Z. K. (1978). On decomposition of primary ideals of Γ-rings. Indian Journal of Pure and Applied Mathematics, 9(9), 912–917.
- Yavuz, S., Onar, D., Sonmez, D., Ersoy, B. A., & Yesilot, G. (2018). Intuitionistic Fuzzy 2-Absorbing Primary Ideals of Commutative Rings. Turkish Journal of Mathematics and Computer Science, 8, 37–48.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|