As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:A study on intuitionistic fuzzy 2-absorbing primary ideals in Г-ring

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/28/3/280-292
Title of paper: A study on intuitionistic fuzzy 2-absorbing primary ideals in Г-ring
Author(s):
P. K. Sharma
Post-Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Hem Lata
Research Scholar, Lovely Professional University, Phagwara, Punjab, India
goyalhema1986@gmail.com
Nitin Bharadwaj
Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India
nitin.15903@lpu.co.in
Presented at: 25th ICIFS, Sofia, 9—10 September 2022
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 3, pages 280–292
DOI: https://doi.org/10.7546/nifs.2022.28.3.280-292
Download:  PDF (235  Kb, File info)
Abstract: In this paper, we initiate the study of a generalization of intuitionistic fuzzy primary ideals in Γ-ring by introducing intuitionistic fuzzy 2-absorbing primary ideals. We investigate the structural characteristics of intuitionistic fuzzy 2-absorbing primary ideals and study their properties.
Keywords: 2-absorbing ideal, 2-absorbing primary ideal, Intuitionistic fuzzy 2-absorbing primary ideal.
AMS Classification: 03F55, 08A72, 13A15, 13A99.
References:
  1. Atanassov, K. T. (1983). Intuitionistic fuzzy sets. In: Sgurev, V. (ed) VII ITKR’s session, Central Science and Technology Library of the Bulgarian Academy of Sciences, Sofia.
  2. Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75, 417–429.
  3. Badawi, A., Tekir, U., & Yetkin, E. (2014). On 2-absorbing primary ideals in commutative rings. Bulletin of the Australian Mathematical Society, 51(4), 1163–1173.
  4. Barnes, W. E. (1966). On the Γ-rings of Nobusawa. Pacific Journal of Mathematics, 18, 411–422.
  5. Elkettani, M. Y., & Kasem, A. (2016). On 2-absorbing δ-primary gamma ideal of Γ-ring. International Journal of Pure and Applied Mathematics, 106(2), 543–550.
  6. Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. Honam Mathematical Journal, 25, 19–41.
  7. Hur, K., Su, Y. J., & Kang, H. W. (2005). Intuitionistic fuzzy ideal of a ring. Journal of the Korean Society Of Mathematical Education, Series B: The Pure And Applied Mathematics, 12(3), 193–209.
  8. Kim, K. H., Jun, Y. B., & Ozturk, M. A. (2001). Intuitionistic fuzzy Γ-ideals of Γ-rings/ Scienctiae Mathematicae Japonicae Online, 4, 431–440.
  9. Kyuno, S. (1978). On prime gamma rings. Pacific Journal of Mathematics, 75(1), 185–190.
  10. Kyuno, S. (1982). Prime ideals in gamma rings. Pacific Journal of Mathematics, 98(2), 375–379.
  11. Nobusawa, N. (1964). On a generalization of the ring theory. Osaka Journal of Mathematics, 1(1), 81–89.
  12. Onar, S., Yavuz, S., Ersoy, B. A., & Hila, K. (2018). Intuitionistic fuzzy 2-absorbing semiprimary ideals of commutative rings. Journal of Discrete Mathematical Sciences and Cryptography, DOI: 10.1080/09720529.2021.1877406.
  13. Palaniappan, N., & Ramachandran, M. (2010). A note on characterization of intuitionistic fuzzy ideals in Γ-rings. International Mathematical Forum, 5(52), 2553–2562.
  14. Palaniappan, N., & Ramachandran, M. (2011). Intuitionistic fuzzy prime ideals in Γ-rings. International Journal of Fuzzy Mathematics and Systems, 1(2), 141–153.
  15. Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2010). Characterization of intuitionistic fuzzy ideals of Γ-rings. Applied Mathematical Sciences, 4(23), 1107–1117.
  16. Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of Intuitionistic fuzzy ideals of Γ-rings. Thai Journal of Mathematics, 9(2), 305–318.
  17. Paul, R. (2015). On various types of ideals of Γ-rings and the corresponding operator rings. International Journal of Engineering Research and Applications, 5(8), 95–98.
  18. Ramachandran, M. (2010). Some characterization of intuitionistic fuzzy ideals in Γ-rings [Doctoral dissertation, Algappa University]. Shodhganga Repository. http://hdl.handle.net/10603/56561.
  19. Sharma, P. K., & Lata, H. (2022). Intuitionistic fuzzy characteristic ideals of a Γ-ring. South East Asian Journal of Mathematics and Mathematical Sciences, 18(1), 49–70.
  20. Sharma, P. K., Lata, H., & Bhardwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of Γ-ring. Creative Mathematics and Informatics, 32(1) (to appear).
  21. Warsi, Z. K. (1978). On decomposition of primary ideals of Γ-rings. Indian Journal of Pure and Applied Mathematics, 9(9), 912–917.
  22. Yavuz, S., Onar, D., Sonmez, D., Ersoy, B. A., & Yesilot, G. (2018). Intuitionistic Fuzzy 2-Absorbing Primary Ideals of Commutative Rings. Turkish Journal of Mathematics and Computer Science, 8, 37–48.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.