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1 Introduction

The concept of a Γ-ring has a special place among generalizations of rings. One of the most
interesting examples of a ring would be the endomorphism ring of an Abelian group, i.e., EndM

or Hom(M,M) where M is an Abelian group. Now if two Abelian groups, say A and B instead
of one are taken, then Hom(A,B) is no longer a ring in the way as EndM becomes a ring because
the composition is no longer defined. However, if one takes an element of Hom(B,A) and put it
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in between two elements of Hom(A,B), then the composition can be defined. This served as a
motivating factor for introducing and studying the notion of a Γ-ring. The notion of a Γ-ring, a
generalization of the concept of associative rings, has been introduced and studied by Nobusawa
in [11]. Barnes [4] slightly weakened the conditions in the definition of a Γ-ring in the sense of
Nobusawa. The structure of Γ-rings was investigated by several authors such as Barnes in [4],
Kyuno in [9,10]. Warsi in [21] studied the decomposition of primary ideal of Γ-rings. Paul in [17]
studied various types of ideals of Γ-rings and the corresponding operator rings.

The concept of an intuitionistic fuzzy set as a generalization of Zadeh’s fuzzy sets is
introduced by Atanassov [1]. Moreover, the notion of intuitionistic fuzzy subring and ideal
is presented by Hur, Kang and Song in [6, 7]. Kim, Jun and Ozturk in [8] tried the idea of
intuitionistic fuzzy sets to the theory of Γ-rings and developed the notion of intuitionistic fuzzy
ideal in Γ-ring. Ramachandran and Palaniappan in [13,15,16,18] studied in detail the properties of
intuitionisti fuzzy ideals of Γ-rings. The concept of intuitionistic fuzzy prime ideal in Γ-ring was
also innovated by Palaniappan and Ramachandran in [14]. Sharma and Lata in [19] innovate the
study of intuitionistic fuzzy characteristic ideals of Γ-ring and its operator ring. The concepts of
intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of a Γ-ring was introduced
and studied by Sharma et al. in [20].

The concept of a 2-absorbing ideal, which is a generalization of prime ideal, was introduced
by Badawi in [2] and which was also studied in [3]. At present, studies on the 2-absorbing ideal
theory are progressing rapidly. Elkettani and Kasem [5] unify the notion of 2-absorbing ideal and
2-absorbing primary ideal to δ-2-absorbing primary ideal of Γ-ring and derived many interesting
results. Yavuz, Onar, and Ersoy in [12, 22] studied the intuitionistic fuzzy 2-absorbing primary
ideal (IF2API) and semi-primary ideal of a commutative ring. The purpose of present paper is to
study the structural characteristics of the concept of IF2API of a commutative Γ-ring.

2 Preliminaries

Let us recall some definitions and results, which are necessary for the development of the paper,

Definition 2.1. ([4, 11]) If (R,+) and (Γ,+) are additive Abelian groups. Then R is called a
Γ-ring (in the sense of Barnes, [4]) if there exist mapping R× Γ×R→ R [image of (x, α, y) is
denoted by xαy, x, y ∈ R,α ∈ Γ] satisfying the following conditions:

(1) xαy ∈ R.

(2) (x+ y)αz = xαz + yαz, x(α + β)y = xαy + xβy, xα(y + z) = xαy + xαz.

(3) (xαy)βz = xα(yβz). for all x, y, z ∈M , and α, β ∈ Γ.

The Γ-ring R is called commutative if xγy = yγx, ∀x, y ∈ R, γ ∈ Γ. An element 1 ∈ R

is said to be the unity of R if for each x ∈ R there exists γ ∈ Γ such that xγ1 = 1γx = x.
A subset I of a Γ-ring R is a left (right) ideal of R if I is an additive subgroup of R and
RΓI = {xαy|x ∈ R,α ∈ Γ, y ∈ I}, (IΓR) is contained in I . If I is both a left and a right
ideal, then I is a two-sided ideal, or simply an ideal of R. A mapping f : R → R

′ of Γ-rings
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is called a Γ-homomorphism, [4] if f(x + y) = f(x) + f(y) and f(xαy) = f(x)αf(y) for all
x, y ∈ R,α ∈ Γ.

Definition 2.2. ( [4]) Let R be a Γ-ring. A proper ideal K of R is called prime if for all pairs of
ideals I and J of R, IΓJ ⊆ K implies that I ⊆ K or J ⊆ K.

Theorem 2.3. ([10, 17]) If K is an ideal of a Γ-ring R, the following conditions are equivalent:

(i) K is a prime ideal of R;

(ii) If a, b ∈ R and aΓRΓb ⊆ K, then a ∈ K or b ∈ K.

Definition 2.4. ([21]) Let R be a Γ-ring. Then the radical of an ideal K of R is denoted by
√
K

and is defined as the set
√
K = {x ∈ R : (xγ)n−1x ∈ K, for some n ∈ N and for all γ ∈ Γ },

where (xγ)n−1x = x for n = 1.

Definition 2.5. ( [4]) An ideal K of a commutative Γ-ring R is said to be primary if for any two
ideals I and J of R, IΓJ ⊆ K implies either I ⊆ K or J ⊆

√
K, where

√
K is the prime radical

of K.

Definition 2.6. ([5]) A proper ideal I of a Γ-ringR is called a 2-absorbing ideal (2AI) if whenever
x, y, z ∈ R, γ1, γ2 ∈ Γ and xγ1yγ2z ∈ I imply that xγ1y ∈ I or xγ2z ∈ I or yγ2z ∈ I .

Definition 2.7. ([5]) A proper ideal I of Γ-ring R is called 2-absorbing primary ideal (2API)
of R if whenever x, y, z ∈ R, γ1, γ2 ∈ Γ and xγ1yγ2z ∈ I , then xγ1y ∈ I or xγ2z ∈

√
I or

yγ2z ∈
√
I .

Remark 2.8. Every 2-absorbing ideal in R is a 2-absorbing primary ideal in R.

However, the converse of the above remark does not hold.
For example: Consider R = Z,Γ = 5Z. Then R is a Γ-ring. Consider I = 12Z. Take

γ1, γ2 ∈ Γ such that 2γ12γ23 ∈ I implies 2γ12 /∈ I , but 2γ23 ∈
√
I . Thus I is a 2API of R,

however I is not a 2AI of R, for 2γ12γ23 ∈ I , but 2γ12 /∈ I and 2γ23 /∈ I .
We now review some intuitionistic fuzzy logic concepts. We refer the reader to follow [1, 6,

19, 20] for complete details.

Definition 2.9. ([6]) An intuitionistic fuzzy set (IFS) A in X can be represented as an object of
the form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA, νA : X → [0, 1] denote the
degree of membership (namely µA(x)) and the degree of non-membership (namely νA(x)) of each
element x ∈ X to A respectively and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Remark 2.10. ([6])

(i) When µA(x) + νA(x) = 1,∀x ∈ X. Then A is called a fuzzy set.

(ii) We denote by IFS(X) the set of all IFSs of X .
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If A,B ∈ IFS(X), then A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x),∀x ∈ X
and A = B ⇔ A ⊆ B and B ⊆ A. For any subset Y of X , the intuitionistic fuzzy characteristic
function χY is an intuitionistic fuzzy set of X , defined as χY (x) = (1, 0),∀x ∈ Y and
χY (x) = (0, 1),∀x ∈ X\Y . Let p, q ∈ [0, 1] with p + q ≤ 1. Then the crisp set A(p,q) =

{x ∈ X : µA(x) ≥ p and νA(x) ≤ q} is called the (p, q)-level cut subset of A. Also the IFS x(p,q)

of X defined as x(p,q)(y) = (p, q), if y = x, otherwise (0, 1) is called the intuitionistic fuzzy point
(IFP) in X with support x. By x(p,q) ∈ A we mean µA(x) ≥ p and νA(x) ≤ q. Thus x(p,q) ∈ A if
and only if x(p,q) ⊆ A. Further if f : X → Y is a mapping and A,B are respectively IFSs of X
and Y , then the image f(A) is an IFS of Y that is defined as µf(A)(y) = Sup{µA(x) : f(x) = y},
νf(A)(y) = Inf{νA(x) : f(x) = y}, for all y ∈ Y and the inverse image f−1(B) is an IFS
of X that is defined as µf−1(B)(x) = µB(f(x)), νf−1(B)(x) = νB(f(x)), for all x ∈ X , i.e.,
f−1(B)(x) = B(f(x)), for all x ∈ X . Also the IFS A of X is said to be f -invariant if for any
x, y ∈ X , whenever f(x) = f(y) implies A(x) = A(y).

Definition 2.11. ([15]) Let A and B be two IFSs of a Γ-ring M and γ ∈ Γ. Then the product
AΓB of A and B is defined by

(µAΓB(x), νAΓB(x)) =

(∨x=yγz(µA(y) ∧ µB(z)),∧x=yγz(νA(y) ∨ νB(z)), if x = yγz

(0, 1), otherwise

Remark 2.12. ([15]) If A and B are two IFSs of a Γ-ring R, then AΓB ⊆ A ∩B

Definition 2.13. ([15]) Let A be an IFS of a Γ-ring R. Then A is called an intuitionistic fuzzy
ideal (IFI) of R if for all x, y ∈ R, γ ∈ Γ, the following are satisfied

(i) µA(x− y) ≥ µA(x) ∧ µA(y);

(ii) µA(xγy) ≥ µA(x) ∨ µA(y);

(iii) νA(x− y) ≤ νA(x) ∨ νA(y);

(iv) νA(xγy) ≤ νA(x) ∧ νA(y).

The set of all intuitionistic fuzzy ideals of a Γ-ring R is denoted by IFI(R). Note that if
A ∈ IFI(R), then µA(0R) ≥ µA(x) and νA(0R) ≤ νA(x),∀x ∈ R (see [15]).

Remark 2.14. ( [13–15]) If A,B and C are IFIs of a Γ-ring R, then AΓB, A ∩ B are also IFIs
of R.

Definition 2.15. ([14]) Let P be an intuitionistic fuzzy ideal (IFI) of a Γ-ring R. Then P is said
to be an intuitionistic fuzzy prime ideal (IFPI) of R if P is non-constant and for any IFIs A,B of
R, AΓB ⊆ P imply A ⊆ P or B ⊆ P .

Lemma 2.16. ([14]) Let A be an IFI of a commutative Γ-ring R. Then the subsequent assertions
are equivalent:

(i) x(p,q)Γy(t,s) = (xΓy)(p∧t,q∨s), where x(p,q), y(t,s) ∈ IFP (R);

(ii) 〈x(p,q)〉Γ〈y(t,s)〉 = 〈(xΓy)(p∧t,q∨s)〉, where 〈x(p,q)〉 is the IFI of R generated by x(p,q).
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Theorem 2.17. ( [14]) Let A be an IFI of Γ-ring R. Then the subsequent assertions are
equivalent:

(i) x(p,q)Γy(t,s) ⊆ A⇒ x(p,q) ⊆ A or y(t,s) ⊆ A, where x(p,q), y(t,s) ∈ IFP (R).

(ii) A is an intuitionistic fuzzy prime ideal of R.

Definition 2.18. ([20]) Let A be an IFI of a Γ-ring R. Then the IFS
√
A of R defined by

√
A = ∩{B : B ∈ IFPI(R);A ⊆ B}

is said to be the intuitionistic fuzzy prime radical of A. Note that
√
A is also an IFI of R.

Proposition 2.19. ([20]) Let A,B be two IFIs of a Γ-ring R. Then
√
AΓB =

√
A ∩B =

√
A ∩
√
B.

Definition 2.20. ([20]) Let Q be a non-constant IFI of a Γ-ring R. Then Q is termed as an
intuitionistic fuzzy primary ideal of R if for any two IFIs A,B of R such that AΓB ⊆ Q implies
that either A ⊆ Q or B ⊆

√
Q.

Theorem 2.21. ( [20]) Let R be a commutative Γ-ring and Q be an IFI of R. Then for any two
IFPs x(p,q), y(t,s) ∈ IFP (R) the subsequent assertions are equivalent:

(i) Q is an intuitionistic fuzzy primary ideal of R;

(ii) x(p,q)Γy(t,s) ⊆ Q implies x(p,q) ⊆ Q or y(t,s) ⊆
√
Q.

Proposition 2.22. ( [20]) Let Q be an IFI of a Γ-ring R. If Q is an intuitionistic fuzzy primary
ideal of R, then for all x, y ∈ R, γ ∈ Γ such that µQ(xγy) > µQ(x), νQ(xγy) < νQ(x) implies
that µQ(xγy) < µ√Q(y), νQ(xγy) > ν√Q(y).

Example 2.23. ([20]) Every IFPI of a Γ-ring R is an IF-primary ideal of R.

Theorem 2.24. ( [20]) Let f be a homomorphism of a Γ-ring R onto a Γ-ring R
′
. If A is an IFI

of R such that A is constant on Ker f , then
√
f(A) = f(

√
A).

Theorem 2.25. ( [20]) Let f be a homomorphism of a Γ-ring R into a Γ-ring R
′
. If B is an IFI

of R , then
√
f−1(B) = f−1(

√
B).

3 Intuitionistic fuzzy 2-absorbing primary ideals of a Γ-ring

In this section, we introduce and study intuitionistic fuzzy 2-absorbing primary ideal (IF2API) of
a Γ-ring R. Throughout this paper we assume that R is a commutative Γ-ring with unity.

Definition 3.1. Let Q be a non-constant IFI of a Γ-ring R. Then Q is called an intuitionistic
fuzzy 2-absorbing primary ideal of R if for any IFPs x(p,q), y(t,s), z(u,v) of R and γ1, γ2 ∈ Γ such
that x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Q implies that either x(p,q)γ1y(t,s) ⊆ Q or x(p,q)γ2z(u,v) ⊆

√
Q or

y(t,s)γ2z(u,v) ⊆
√
Q.
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Proposition 3.2. Every intuitionistic fuzzy primary ideal of a Γ-ring R is an intuitionistic fuzzy
2-absorbing primary ideal of R.

Proof. The proof is straightforward.

Theorem 3.3. Let Q be an IFI of a Γ-ring R. If Q is an IF2API of R, then Q(α,β) is a 2API of
Γ-ring R for all α ∈ [0, µQ(0)] and β ∈ [νQ(0), 1] with α + β ≤ 1 and Q(α,β) 6= R.

Proof. Let Q be an intuitionistic fuzzy 2-absorbing primary ideal of R and suppose that
x, y, z ∈ R, γ1, γ2 ∈ Γ are such that xγ1yγ2z ∈ Q(α,β) for all α ∈ [0, µQ(0)] and β ∈ [νQ(0), 1]

with α + β ≤ 1 and Q(α,β) 6= R. Then µQ(xγ1yγ2z) ≥ α, νQ(xγ1yγ2z) ≤ β implies
µ(xγ1yγ2z)(α,β)(xγ1yγ2z) = α ≤ µQ(xγ1yγ2z) and ν(xγ1yγ2z)(α,β)(xγ1yγ2z) = β ≥ νQ(xγ1yγ2z)

and so we have (xγ1yγ2z)(α,β) ⊆ Q, i.e., x(α,β)γ1y(α,β)γ2z(α,β) ⊆ Q. Since Q is an intuitionistic
fuzzy 2-absorbing primary ideal of Γ-ring R, we have x(α,β)γ1y(α,β) ⊆ Q or x(α,β)γ2z(α,β) ⊆

√
Q

or y(α,β)γ2z(α,β) ⊆
√
Q, i.e., (xγ1y)(α,β) ⊆ Q or (xγ2z)(α,β) ⊆

√
Q or (yγ2z)(α,β) ⊆

√
Q.

Thus xγ1y ∈ Q(α,β) or xγ2z ∈ (
√
Q)(α,β) =

√
Q(α,β) or yγ2z ∈

√
Q(α,β).

Therefore Q(α,β) is a 2-absorbing primary ideal of Γ-ring R.

The next example reveal that the opposite of the theorem is not generally true.

Example 3.4. Let R = Z and Γ = 2Z, so that R is a Γ-ring. Define the IFI Q of R by

µQ(x) =


1, if x = 0

1/3, if x ∈ 15Z− {0}
0, if x ∈ Z− 15Z

; νQ(x) =


0, if x = 0

1/2, if x ∈ 15Z− {0}
1, if x ∈ Z− 15Z.

.

Since Q(0,1) = Z, Q(1/3,1/2) = 15Z, Q(1,0) = {0}, then we get Q(α,β) is a 2-absorbing primary
ideal of Γ-ring R. But for γ1, γ2 ∈ 2Z, we get

3(1/2,1/3)γ15(1/2,1/3)γ21(1/3,1/2) = (3γ15γ21)(1/2∧1/2∧1/3,1/3∨1/3∨1/2) = (3γ15γ21)(1/3,1/2) ⊆ Q

and
µ3(1/2,1/3)γ15(1/2,1/3)(3γ15) = µ(3γ15)(1/2,1/3)(3γ15) = 1/2 > 1/3 = µQ(3γ15).

Similarly, we get ν3(1/2,1/3)γ15(1/2,1/3)(3γ15) < νQ(3γ15).
This implies that 3(1/2,1/3)γ15(1/2,1/3) * Q.

µ3(1/2,1/3)γ21(1/3,1/2)(3γ21) = µ(3γ21)(1/3,1/2)(3γ21) = 1/3 > 0 = µ√Q(3γ21).

Similarly, ν3(1/2,1/3)γ21(1/3,1/2)(3γ21) < ν√Q(3γ21). This implies 3(1/2,1/3)γ21(1/3,1/2) *
√
Q. In

the same way, we can show that 5(1/2,1/3)γ21(1/3,1/2) *
√
Q. Thus Q is not an intuitionistic fuzzy

2-absorbing primary ideal of Γ-ring R.

Corollary 3.5. If Q is an intuitionistic fuzzy 2-absorbing primary ideal of Γ-ring R, then

Q∗ = {x ∈ R : µQ(x) = µQ(0) and νQ(x) = νQ(0)}

is a 2-absorbing primary ideal of Γ-ring R.

Proof. Since Q is a non-constant intuitionistic fuzzy ideal of Γ-ring R, then Q∗ 6= R. Now the
result follows from the above theorem.
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In the sequel of the paper, for the sake of simplicity, we denote xm = xγ1xγ2x · · · γm−1x for
some γ1, γ2, . . . , γm−1 ∈ Γ and for some m ∈ Z+.

Theorem 3.6. Let J be a 2-absorbing primary ideal of Γ-ring R. Then the intuitionistic fuzzy
characteristic function χJ w.r.t. J defined by

µχJ (x) =

1, if x ∈ J
0, otherwise

, νχJ (x) =

0, if x ∈ J
1, otherwise

is an IF2API of Γ-ring R.

Proof. We have J 6= R and so Q = χJ is non-constant because J is a 2-absorbing primary ideal
of R. Assume that x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Q, but x(p,q)γ1y(t,s) * Q or x(p,q)γ2z(u,v) *

√
Q or

y(t,s)γ2z(u,v) *
√
Q, where x(p,q), y(t,s), z(u,v) are IFPs of R and γ1, γ2 ∈ Γ.

Then µQ(xγ1y) < p ∧ t, νQ(xγ1y) > q ∨ s, and µQ{(xγ2z)m} < µ√Q(xγ2z) = p ∧ u,
νQ{(xγ2z)m} > ν√Q(xγ2z) = q ∨ v, and µQ{(yγ2z)m} < µ√Q(yγ2z) = t ∧ u, νQ{(yγ2z)m} >
µ√Q(yγ2z) = s ∨ v for all m ∈ Z. Hence µQ(xγ1y) = 0, νQ(xγ1y) = 1 and so xγ1y /∈ J ;
µQ{(xγ2z)m} = 0, νQ{(xγ2z)m} = 1 and so (xγ2z)m /∈ Q implies that xγ2z /∈

√
Q;

µQ{(yγ2z)m} = 0, νQ{(yγ2z)m} = 1 and so (yγ2z)m /∈ Q implies that yγ2z /∈
√
Q.

Since J is a 2-absorbing ideal of R, we have xγ1yγ2z /∈ J and so µQ(xγ1yγ2z) = 0,

νQ(xγ1yγ2z) = 1 for all x, y, z ∈ R and γ1, γ2 ∈ Γ.
By our hypothesis, we have (xγ1yγ2z)(p∧t∧u,q∨s∨v) = x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Q and

p ∧ t ∧ u < µQ(xγ1yγ2z) = 0, q ∨ s ∨ v > νQ(xγ1yγ2z) = 1. Hence p ∨ t = 0, q ∨ s = 1 or
p∨u = 0, q ∨ v = 1 or t∨u = 0, s∨ v = 1, which is a contradiction. Hence x(p,q)γ1y(t,s) ⊆ Q or
x(p,q)γ2z(u,v) ⊆

√
Q or y(t,s)γ2z(u,v) ⊆

√
Q and Q is an intuitionistic fuzzy 2-absorbing primary

ideal of Γ-ring R.

Definition 3.7. Let Q be a non-constant IFI of a Γ-ring R. Then Q is called an intuitionistic
fuzzy 2-absorbing ideal (IF2AI) of R if for any IFPs x(p,q), y(t,s), z(u,v) of R and γ1, γ2 ∈ Γ

such that x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Q implies that either x(p,q)γ1y(t,s) ⊆ Q or x(p,q)γ2z(u,v) ⊆ Q or
y(t,s)γ2z(u,v) ⊆ Q.

Theorem 3.8. Every IF2AI of Γ-ring R is an IF2API of R.

Proof. The proof is straightforward.

The next example reveal that the opposite of the above theorem is not true.

Example 3.9. Let R = Z and Γ = 5Z, so R is a Γ-ring. Let Q = χ12Z. Then Q is an IFI
of Γ-ring R. It can be easily verified that Q is an IF2API of R, but it is not an IF2AI of R for
γ1, γ2 ∈ Γ such that 2(p,q)γ12(t,s)γ23(u,v) = (2γ12γ23)(p∧t∧u,q∨s∨v) ⊆ Q implies 2(p,q)γ12(t,s) =

(2γ12)(p∧t,q∨s) * Q, 2(p,q)γ23(u,v) = (2γ23)(p∧u,q∨v) * Q, 2(t,s)γ23(u,v) = (2γ23)(t∧u,s∨v) * Q.

Proposition 3.10. If Q is an IF2API of Γ-ring R, then
√
Q is an IF2AI of R.
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Proof. Suppose that x(p,q)γ1y(t,s)γ2z(u,v) ⊆
√
Q and x(p,q)γ1y(t,s) *

√
Q, where x(p,q), y(t,s),

z(u,v) ∈ IFPs(R) and γ1, γ2 ∈ Γ.
Since x(p,q)γ1y(t,s)γ2z(u,v) = (xγ1yγ2z)(p∧t∧u,q∨s∨v) ⊆

√
Q⇒ µ√Q(xγ1yγ2z) ≥ p∧ t∧ u and

ν√Q(xγ1yγ2z) ≤ q ∨ s ∨ v.
From the definition of

√
Q, we have µ√Q(xγ1yγ2z) = Inf{µQ((xγ1yγ2z)m) : m ∈ N} ≥

Inf{µQ(xmγ3y
mγ4z

m) : m ∈ N} ≥ p ∧ t ∧ u, for some γ3, γ4 ∈ Γ. Similarly, we can show that
ν√Q(xγ1yγ2z) ≤ q ∨ s ∨ v.

Then there exists k ∈ Z+ such that for some γ′1, γ
′
2 ∈ Γ, µQ((xγ1yγ2z)k) ≥ µQ(xγ1yγ2z)

≥ p ∧ t ∧ u and νQ((xγ1yγ2z)k) ≤ νQ(xγ1yγ2z) ≤ q ∨ s ∨ v. This implies that
(x(p,q)γ1y(t,s)γ2z(u,v))

k ∈ Q. If x(p,q)γ1y(t,s) /∈
√
Q, then for all k ∈ Z+ and for some γ ∈ Γ, we

have µQ(x(p,q)γ1y(t,s))
k ≥ µQ(xk(p,q)γy

k
(t,s)) and νQ(x(p,q)γ1y(t,s))

k ≤ νQ(xk(p,q)γy
k
(t,s)) implies that

x(p,q)γ1y(t,s) *
√
Q. Since Q is an IF2API of R, then x(p,q)γ2z(u,v) ⊆

√
Q or y(t,s)γ2z(u,v) ⊆

√
Q.

Hence
√
Q is an IF2AI of R.

Definition 3.11. Let Q be an IF2API of Γ-ring R and P =
√
Q which is an IF2AI of R. Then Q

is called an intuitionistic fuzzy P -2-absorbing primary ideal (IFP2API)of R.

Theorem 3.12. Let Q1, Q2, . . . , Qn be IFP2APIs of Γ-ring R for some IF2AI P of R. Then
Q =

⋂n
i=1 Qi is an IFP2API of R.

Proof. Assume that x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Q and x(p,q)γ1y(t,s) * Q, for any x(p,q), y(t,s),

z(u,v) ∈ IFP (R) and γ1, γ2 ∈ Γ. Then x(p,q)γ1y(t,s) * Qj , for some j ∈ {1, 2, . . . , n} and
x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Qj , for all j ∈ {1, 2, . . . , n}. Since Qj is an IFP2API of R, we have

y(t,s)γ2z(u,v) ⊆
√
Qj = P =

n⋂
i=1

√
Qi =

√√√√ n⋂
i=1

Qi =
√
Q

or

x(p,q)γ2z(u,v) ⊆
√
Qj = P =

n⋂
i=1

√
Qi =

√√√√ n⋂
i=1

Qi =
√
Q.

Thus Q is an IFP2API of R.

In the next example, we convey that if Q1, Q2 are two IF2APIs of a Γ-ring R, then Q1 ∩ Q2

need not to be an IF2API of R.

Example 3.13. Let R = Z and Γ = pZ, where p > 5 is a prime integer. So that R is a Γ-ring.
Take Q1 = χ50Z, Q2 = χ75Z. Clearly Q1, Q2 are IF2APIs of R. But Q1 ∩ Q2 = χ150Z and
as such

√
Q1 ∩Q2 = χ30Z, then for γ1, γ2 ∈ Γ such that 25(p,q)γ13(t,s)γ22(u,v) ⊆ Q1 ∩ Q2, but

25(p,q)γ13(t,s) * Q1 ∩Q2, 25(p,q)γ22(u,v) *
√
Q1 ∩Q2 and 3(t,s)γ22(u,v) *

√
Q1 ∩Q2. Therefore,

Q1 ∩Q2 is not an IF2API of R.

Theorem 3.14. Let Q be an IFI of a Γ-ring R. If
√
Q is an IFPI of R, then Q is an IF2API of R.
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Proof. Suppose that x(p,q)γ1y(t,s)γ2z(u,v) ⊆ Q and x(p,q)γ1y(t,s) * Q, for any x(p,q), y(t,s),

z(u,v) ∈ IFP (R) and γ1, γ2 ∈ Γ.
Since x(p,q)γ1y(t,s)γ2z(u,v) ∈ Q and R is commutative Γ-ring R, we have

x(p,q)γ1y(t,s)γ2z(u,v)γ2z(u,v) = (x(p,q)γ1z(u,v))γ2(y(t,s)γ2z(u,v)) ⊆ Q ⊆
√
Q.

Thus x(p,q)γ1z(u,v) ⊆
√
Q or y(t,s)γ2z(u,v) ⊆

√
Q. Since

√
Q is an IFPI of R. Therefore we

conclude that Q is an IF2API of R.

4 Homomorphic behaviour of intuitionistic fuzzy
2-absorbing primary ideals

In this section we shall discuss the behaviour of IF2APIs of Γ-ring under Γ-ring homomorphism.

Theorem 4.1. Let f : R → R
′

be a surjective Γ-homomorphism. If Q is an IF2API of R which
is constant on Ker f , then f(Q) is an IF2API of R

′
.

Proof. Suppose that x(p,q)γ1y(t,s)γ2z(u,v) = (xγ1yγ2z)(p∧t∧u,q∨s∨v) ⊆ f(Q), where x(p,q), y(t,s),

z(u,v) ∈ IFP (R
′
) and γ1, γ2 ∈ Γ. Since f is a surjective Γ-homomorphism, then there exist

a, b, c ∈ R such that f(a) = x, f(b) = y, f(c) = z. Thus

µa(p,q)γ1b(t,s)γ2c(u,v)(aγ1bγ2c) = µ(aγ1bγ2c)(p∧t∧u,q∨s∨v)(aγ1bγ2c)

= p ∧ t ∧ u
≤ µf(Q)(xγ1yγ2z)

= µf(Q)(f(a)γ1f(b)γ2f(c))

= µf(Q)(f(aγ1bγ2c))

= µf−1(f(Q))(aγ1bγ2c) [As Q is constant on Kerf , so f−1(f(Q)) = Q]

= µQ(aγ1bγ2c).

Thus µa(p,q)γ1b(t,s)γ2c(u,v)(aγ1bγ2c) ≤ µQ(aγ1bγ2c).
Similarly, we can show that νa(p,q)γ1b(t,s)γ2c(u,v)(aγ1bγ2c) ≥ νQ(aγ1bγ2c). Then we get

a(p,q)γ1b(t,s)γ2c(u,v) ⊆ Q. Since Q is an IF2API of R, then a(p,q)γ1b(t,s) ⊆ Q or a(p,q)γ2c(u,v) ⊆√
Q or b(t,s)γ2c(u,v) ⊆

√
Q. Thus

p ∧ t ≤ µQ(aγ1b) = µf(Q)(f(aγ1b))

= µf(Q)(f(a)γ1f(b))

= µf(Q)(xγ1y).

Similarly, we can show that q ∨ s ≥ µf(Q)(xγ1y) and so (xγ1y)(p∧t,q∨s) ⊆ f(Q).
Thus x(p,q)γ1y(t,s) ⊆ f(Q) or

p ∧ u ≤ µ√Q(aγ2c) = µf(
√
Q)(f(aγ2c))

= µf(
√
Q)(f(a)γ2f(c))

= µf(
√
Q)(xγ2z).
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Similarly, we can show that q ∨ v ≥ νf(
√
Q)(xγ2z) and so (xγ2z)(p∧u,q∨v) ⊆ f(

√
Q). Thus

x(p,q)γ2z(u,v) ⊆ f(
√
Q) or

t ∧ u ≤ µ√Q(bγ2c) = µf(
√
Q)(f(bγ2c))

= µf(
√
Q)(f(b)γ2f(c))

= µf(
√
Q)(yγ2z).

Similarly, we can show that s ∨ v ≥ νf(
√
Q)(yγ2z) and so (yγ2z)(t∧u,s∨v) ⊆ f(

√
Q).

Thus y(t,s)γ2z(u,v) ⊆ f(
√
Q). Hence f(Q) is an IF2API of R′ .

Corollary 4.2. Let f : R → R
′

be a surjective Γ-homomorphism. If Q is an IF2API of R which
is constant on Ker f , then f(

√
Q) is an IF2AI of R

′

Proof. The result follows from Theorem (4.1), Proposition (3.10) and Theorem (2.24).

Theorem 4.3. Let f : R→ R
′

be a Γ-homomorphism. If Q
′

is an IF2API of R
′
, then f−1(Q

′
) is

an IF2API of R.

Proof. Suppose that x(p,q)γ1y(t,s)γ2z(u,v) ⊆ f−1(Q
′
), where x(p,q), y(t,s), z(u,v) ∈ IFP (R) and

γ1, γ2 ∈ Γ.

p ∧ t ∧ u ≤ µf−1(Q′ )(xγ1yγ2z)

= µQ′ (f(xγ1yγ2z))

= µQ′ (f(x)γ1f(y)γ2f(z)),

i.e., p ∧ t ∧ u ≤ µQ′ (f(x)γ1f(y)γ2f(z)).
Similarly, we can show that q ∨ s ∨ v ≥ νQ′ (f(x)γ1f(y)γ2f(z)). Let f(x) = a, f(y) = b,

f(z) = c. Hence we have that p∧ t∧u ≤ µQ′ (aγ1bγ2c) and q∨s∨v ≥ νQ′ (aγ1bγ2c) and as such
a(p,q)γ1b(t,s)γ2c(u,v) ⊆ Q

′ . Since Q′ is an intuitionistic fuzzy 2-absorbing primary ideal of R, then
a(p,q)γ1b(t,s) ⊆ Q

′ or a(p,q)γ2c(u,v) ⊆
√
Q′ or b(t,s)γ2c(u,v) ⊆

√
Q′ . If a(p,q)γ1b(t,s) ⊆ Q

′ , then

p ∧ t ≤ µQ′ (aγ1b) = µQ′ (f(x)γ1f(y))

= µQ′ (f(xγ1y))

= µf−1(Q′ )(xγ1y).

i.e., p ∧ t ≤ µf−1(Q
′
)(xγ1y).

Similarly, we can show that q ∨ s ≥ νf−1(Q′ )(xγ1y). Thus we get x(p,q)γ1y(t,s) =

(xγ1y)(p∧t,q∨s) ⊆ f−1(Q
′
). If a(p,q)γ2c(u,v) ⊆

√
Q′ , then

p ∧ u ≤ µ√
Q′

(aγ2c) = µ√
Q′

(f(x)γ2f(z))

= µ√
Q′

(f(xγ2z))

= µ
f−1(
√
Q′ )

(xγ2z).

i.e., p ∧ u ≤ µ
f−1(
√
Q′ )

(xγ2z).
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Similarly, we can show that q ∨ v ≥ ν
f−1(
√
Q′ )

(xγ2z). Thus we get x(p,q)γ2z(u,v) =

(xγ2z)(p∧u,q∨v) ⊆ f−1(
√
Q′). If b(t,s)γ2c(u,v) ⊆

√
Q′ , then

t ∧ u ≤ µ√
Q′

(bγ2c) = µ√
Q′

(f(y)γ2f(z))

= µ√
Q′

(f(yγ2z))

= µ
f−1(
√
Q′ )

(yγ2z).

i.e., t ∧ u ≤ µ
f−1(
√
Q′ )

(yγ2z).

Similarly, we can show that s ∨ v ≥ ν
f−1(
√
Q′ )

(yγ2z). Thus we get y(t,s)γ2z(u,v) =

(yγ2z)(t∧u,s∨v) ⊆ f−1(
√
Q′). Therefore, we see that f−1(Q

′
) is an IF2API of R.

Corollary 4.4. Let f : R→ R
′
be a Γ-homomorphism. If Q

′
is an IF2API of R

′
, then f−1(

√
Q′)

is an IF2AI of R

Proof. The result follows from Theorem (4.3), Proposition (3.10) and Theorem (2.25).

5 Conclusion

In this paper, we contemplated IF2APIs of a Γ-ring R from a theoretical point of view. We
proved that every IF2AI of Γ-ring R is an IF2API, but converse may not be true. With the help
of an example we have shown that intersection of two IF2APIs of Γ-ring R need not an IF2API.
However, we proved that intersection of a finite number of IFP2APIs of Γ-ring R be an IFP2API.
The behaviour of IF2API under Γ-ring homomorphism has been investigated. It is shown that the
notion of IF2APIs in Γ-ring inherits most of the essential properties of IF2APIs of commutative
ring.
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