Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 2022, Volume 28, Number 3, 280–292 DOI: 10.7546/nifs.2022.28.3.280-292 Proceedings of the 25th Jubilee Edition of the International Conference on Intuitionistic Fuzzy Sets (ICIFS'2022) 9–10 September 2022, Sofia, Bulgaria

A study on intuitionistic fuzzy 2-absorbing primary ideals in Γ-ring

P. K. Sharma¹, Hem Lata² and Nitin Bharadwaj³

¹ Post-Graduate Department of Mathematics, D.A.V. College Jalandhar, Punjab, India e-mail: pksharma@davjalandhar.com

² Research Scholar, Lovely Professional University Phagwara, Punjab, India e-mail: goyalhema1986@gmail.com

³ Department of Mathematics, Lovely Professional University Phagwara, Punjab, India e-mail: nitin.15903@lpu.co.in

Received: 23 June 2022

Accepted: 16 August 2022

Abstract: In this paper, we initiate the study of a generalization of intuitionistic fuzzy primary ideals in Γ -ring by introducing intuitionistic fuzzy 2-absorbing primary ideals. We investigate the structural characteristics of intuitionistic fuzzy 2-absorbing primary ideals and study their properties.

Keywords: 2-absorbing ideal, 2-absorbing primary ideal, Intuitionistic fuzzy 2-absorbing primary ideal.

2020 Mathematics Subject Classification: 03F55, 08A72, 13A15, 13A99.

1 Introduction

The concept of a Γ -ring has a special place among generalizations of rings. One of the most interesting examples of a ring would be the endomorphism ring of an Abelian group, i.e., End M or $\operatorname{Hom}(M, M)$ where M is an Abelian group. Now if two Abelian groups, say A and B instead of one are taken, then $\operatorname{Hom}(A, B)$ is no longer a ring in the way as End M becomes a ring because the composition is no longer defined. However, if one takes an element of $\operatorname{Hom}(B, A)$ and put it

in between two elements of Hom(A, B), then the composition can be defined. This served as a motivating factor for introducing and studying the notion of a Γ -ring. The notion of a Γ -ring, a generalization of the concept of associative rings, has been introduced and studied by Nobusawa in [11]. Barnes [4] slightly weakened the conditions in the definition of a Γ -ring in the sense of Nobusawa. The structure of Γ -rings was investigated by several authors such as Barnes in [4], Kyuno in [9,10]. Warsi in [21] studied the decomposition of primary ideal of Γ -rings. Paul in [17] studied various types of ideals of Γ -rings and the corresponding operator rings.

The concept of an intuitionistic fuzzy set as a generalization of Zadeh's fuzzy sets is introduced by Atanassov [1]. Moreover, the notion of intuitionistic fuzzy subring and ideal is presented by Hur, Kang and Song in [6, 7]. Kim, Jun and Ozturk in [8] tried the idea of intuitionistic fuzzy sets to the theory of Γ -rings and developed the notion of intuitionistic fuzzy ideal in Γ -ring. Ramachandran and Palaniappan in [13,15,16,18] studied in detail the properties of intuitionisti fuzzy ideals of Γ -rings. The concept of intuitionistic fuzzy prime ideal in Γ -ring was also innovated by Palaniappan and Ramachandran in [14]. Sharma and Lata in [19] innovate the study of intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of a Γ -ring was introduced and studied by Sharma et al. in [20].

The concept of a 2-absorbing ideal, which is a generalization of prime ideal, was introduced by Badawi in [2] and which was also studied in [3]. At present, studies on the 2-absorbing ideal theory are progressing rapidly. Elkettani and Kasem [5] unify the notion of 2-absorbing ideal and 2-absorbing primary ideal to δ -2-absorbing primary ideal of Γ -ring and derived many interesting results. Yavuz, Onar, and Ersoy in [12, 22] studied the intuitionistic fuzzy 2-absorbing primary ideal (IF2API) and semi-primary ideal of a commutative ring. The purpose of present paper is to study the structural characteristics of the concept of IF2API of a commutative Γ -ring.

2 Preliminaries

Let us recall some definitions and results, which are necessary for the development of the paper,

Definition 2.1. ([4, 11]) If (R, +) and $(\Gamma, +)$ are additive Abelian groups. Then R is called a Γ -ring (in the sense of Barnes, [4]) if there exist mapping $R \times \Gamma \times R \to R$ [image of (x, α, y) is denoted by $x\alpha y, x, y \in R, \alpha \in \Gamma$] satisfying the following conditions:

- (1) $x\alpha y \in R$.
- (2) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y+z) = x\alpha y + x\alpha z$.
- (3) $(x\alpha y)\beta z = x\alpha(y\beta z)$. for all $x, y, z \in M$, and $\alpha, \beta \in \Gamma$.

The Γ -ring R is called commutative if $x\gamma y = y\gamma x, \forall x, y \in R, \gamma \in \Gamma$. An element $1 \in R$ is said to be the unity of R if for each $x \in R$ there exists $\gamma \in \Gamma$ such that $x\gamma 1 = 1\gamma x = x$. A subset I of a Γ -ring R is a left (right) ideal of R if I is an additive subgroup of R and $R\Gamma I = \{x\alpha y | x \in R, \alpha \in \Gamma, y \in I\}, (I\Gamma R)$ is contained in I. If I is both a left and a right ideal, then I is a two-sided ideal, or simply an ideal of R. A mapping $f : R \to R'$ of Γ -rings is called a Γ -homomorphism, [4] if f(x+y) = f(x) + f(y) and $f(x\alpha y) = f(x)\alpha f(y)$ for all $x, y \in R, \alpha \in \Gamma$.

Definition 2.2. ([4]) Let R be a Γ -ring. A proper ideal K of R is called prime if for all pairs of ideals I and J of R, $I\Gamma J \subseteq K$ implies that $I \subseteq K$ or $J \subseteq K$.

Theorem 2.3. ([10, 17]) If K is an ideal of a Γ -ring R, the following conditions are equivalent: (i) K is a prime ideal of R;

(ii) If $a, b \in R$ and $a\Gamma R\Gamma b \subseteq K$, then $a \in K$ or $b \in K$.

Definition 2.4. ([21]) Let R be a Γ -ring. Then the radical of an ideal K of R is denoted by \sqrt{K} and is defined as the set

 $\sqrt{K} = \{x \in R : (x\gamma)^{n-1}x \in K, \text{ for some } n \in \mathbb{N} \text{ and for all } \gamma \in \Gamma \},\$

where $(x\gamma)^{n-1}x = x$ for n = 1.

Definition 2.5. ([4]) An ideal K of a commutative Γ -ring R is said to be primary if for any two ideals I and J of R, $I\Gamma J \subseteq K$ implies either $I \subseteq K$ or $J \subseteq \sqrt{K}$, where \sqrt{K} is the prime radical of K.

Definition 2.6. ([5]) A proper ideal I of a Γ -ring R is called a 2-absorbing ideal (2AI) if whenever $x, y, z \in R, \gamma_1, \gamma_2 \in \Gamma$ and $x\gamma_1 y\gamma_2 z \in I$ imply that $x\gamma_1 y \in I$ or $x\gamma_2 z \in I$ or $y\gamma_2 z \in I$.

Definition 2.7. ([5]) A proper ideal I of Γ -ring R is called 2-absorbing primary ideal (2API) of R if whenever $x, y, z \in R, \gamma_1, \gamma_2 \in \Gamma$ and $x\gamma_1 y\gamma_2 z \in I$, then $x\gamma_1 y \in I$ or $x\gamma_2 z \in \sqrt{I}$ or $y\gamma_2 z \in \sqrt{I}$.

Remark 2.8. Every 2-absorbing ideal in R is a 2-absorbing primary ideal in R.

However, the converse of the above remark does not hold.

For example: Consider $R = \mathbb{Z}, \Gamma = 5\mathbb{Z}$. Then R is a Γ -ring. Consider $I = 12\mathbb{Z}$. Take $\gamma_1, \gamma_2 \in \Gamma$ such that $2\gamma_1 2\gamma_2 3 \in I$ implies $2\gamma_1 2 \notin I$, but $2\gamma_2 3 \in \sqrt{I}$. Thus I is a 2API of R, however I is not a 2AI of R, for $2\gamma_1 2\gamma_2 3 \in I$, but $2\gamma_1 2 \notin I$ and $2\gamma_2 3 \notin I$.

We now review some intuitionistic fuzzy logic concepts. We refer the reader to follow [1, 6, 19, 20] for complete details.

Definition 2.9. ([6]) An intuitionistic fuzzy set (IFS) A in X can be represented as an object of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$, where the functions $\mu_A, \nu_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Remark 2.10. ([6])

(i) When $\mu_A(x) + \nu_A(x) = 1, \forall x \in X$. Then A is called a fuzzy set.

(ii) We denote by IFS(X) the set of all IFSs of X.

If $A, B \in IFS(X)$, then $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x), \forall x \in X$ and $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A$. For any subset Y of X, the intuitionistic fuzzy characteristic function χ_Y is an intuitionistic fuzzy set of X, defined as $\chi_Y(x) = (1,0), \forall x \in Y$ and $\chi_Y(x) = (0,1), \forall x \in X \setminus Y$. Let $p, q \in [0,1]$ with $p + q \leq 1$. Then the crisp set $A_{(p,q)} =$ $\{x \in X : \mu_A(x) \geq p \text{ and } \nu_A(x) \leq q\}$ is called the (p,q)-level cut subset of A. Also the IFS $x_{(p,q)}$ of X defined as $x_{(p,q)}(y) = (p,q)$, if y = x, otherwise (0,1) is called the intuitionistic fuzzy point (IFP) in X with support x. By $x_{(p,q)} \in A$ we mean $\mu_A(x) \geq p$ and $\nu_A(x) \leq q$. Thus $x_{(p,q)} \in A$ if and only if $x_{(p,q)} \subseteq A$. Further if $f : X \to Y$ is a mapping and A, B are respectively IFSs of X and Y, then the image f(A) is an IFS of Y that is defined as $\mu_{f(A)}(y) = Sup\{\mu_A(x) : f(x) = y\}$, $\nu_{f(A)}(y) = Inf\{\nu_A(x) : f(x) = y\}$, for all $y \in Y$ and the inverse image $f^{-1}(B)$ is an IFS of X that is defined as $\mu_{f^{-1}(B)}(x) = \mu_B(f(x)), \nu_{f^{-1}(B)}(x) = \nu_B(f(x))$, for all $x \in X$, i.e., $f^{-1}(B)(x) = B(f(x))$, for all $x \in X$. Also the IFS A of X is said to be f-invariant if for any $x, y \in X$, whenever f(x) = f(y) implies A(x) = A(y).

Definition 2.11. ([15]) Let A and B be two IFSs of a Γ -ring M and $\gamma \in \Gamma$. Then the product $A\Gamma B$ of A and B is defined by

$$(\mu_{A\Gamma B}(x),\nu_{A\Gamma B}(x)) = \begin{cases} (\lor_{x=y\gamma z}(\mu_A(y) \land \mu_B(z)), \land_{x=y\gamma z}(\nu_A(y) \lor \nu_B(z)), & \text{if } x = y\gamma z \\ (0,1), & \text{otherwise} \end{cases}$$

Remark 2.12. ([15]) If A and B are two IFSs of a Γ -ring R, then $A\Gamma B \subseteq A \cap B$

Definition 2.13. ([15]) Let A be an IFS of a Γ -ring R. Then A is called an intuitionistic fuzzy ideal (IFI) of R if for all $x, y \in R, \gamma \in \Gamma$, the following are satisfied

(i) $\mu_A(x-y) \ge \mu_A(x) \land \mu_A(y);$ (ii) $\mu_A(x\gamma y) \ge \mu_A(x) \lor \mu_A(y);$ (iii) $\nu_A(x-y) \le \nu_A(x) \lor \nu_A(y);$ (iv) $\nu_A(x\gamma y) \le \nu_A(x) \land \nu_A(y).$

The set of all intuitionistic fuzzy ideals of a Γ -ring R is denoted by IFI(R). Note that if $A \in IFI(R)$, then $\mu_A(0_R) \ge \mu_A(x)$ and $\nu_A(0_R) \le \nu_A(x), \forall x \in R$ (see [15]).

Remark 2.14. ([13–15]) If A, B and C are IFIs of a Γ -ring R, then $A\Gamma B$, $A \cap B$ are also IFIs of R.

Definition 2.15. ([14]) Let P be an intuitionistic fuzzy ideal (IFI) of a Γ -ring R. Then P is said to be an intuitionistic fuzzy prime ideal (IFPI) of R if P is non-constant and for any IFIs A, B of R, $A\Gamma B \subseteq P$ imply $A \subseteq P$ or $B \subseteq P$.

Lemma 2.16. ([14]) Let A be an IFI of a commutative Γ -ring R. Then the subsequent assertions are equivalent:

(i) $x_{(p,q)}\Gamma y_{(t,s)} = (x\Gamma y)_{(p\wedge t,q\vee s)}$, where $x_{(p,q)}, y_{(t,s)} \in IFP(R)$; (ii) $\langle x_{(p,q)} \rangle \Gamma \langle y_{(t,s)} \rangle = \langle (x\Gamma y)_{(p\wedge t,q\vee s)} \rangle$, where $\langle x_{(p,q)} \rangle$ is the IFI of R generated by $x_{(p,q)}$. **Theorem 2.17.** ([14]) Let A be an IFI of Γ -ring R. Then the subsequent assertions are equivalent:

(i) $x_{(p,q)}\Gamma y_{(t,s)} \subseteq A \Rightarrow x_{(p,q)} \subseteq A \text{ or } y_{(t,s)} \subseteq A, \text{ where } x_{(p,q)}, y_{(t,s)} \in IFP(R).$

(ii) A is an intuitionistic fuzzy prime ideal of R.

Definition 2.18. ([20]) Let A be an IFI of a Γ -ring R. Then the IFS \sqrt{A} of R defined by

 $\sqrt{A} = \cap \{B : B \in IFPI(R); A \subseteq B\}$

is said to be the intuitionistic fuzzy prime radical of A. Note that \sqrt{A} is also an IFI of R.

Proposition 2.19. ([20]) Let A, B be two IFIs of a Γ -ring R. Then

$$\sqrt{A\Gamma B} = \sqrt{A\cap B} = \sqrt{A} \cap \sqrt{B}.$$

Definition 2.20. ([20]) Let Q be a non-constant IFI of a Γ -ring R. Then Q is termed as an intuitionistic fuzzy primary ideal of R if for any two IFIs A, B of R such that $A\Gamma B \subseteq Q$ implies that either $A \subseteq Q$ or $B \subseteq \sqrt{Q}$.

Theorem 2.21. ([20]) Let R be a commutative Γ -ring and Q be an IFI of R. Then for any two IFPs $x_{(p,q)}, y_{(t,s)} \in IFP(R)$ the subsequent assertions are equivalent:

(i) Q is an intuitionistic fuzzy primary ideal of R;

(ii) $x_{(p,q)}\Gamma y_{(t,s)} \subseteq Q$ implies $x_{(p,q)} \subseteq Q$ or $y_{(t,s)} \subseteq \sqrt{Q}$.

Proposition 2.22. ([20]) Let Q be an IFI of a Γ -ring R. If Q is an intuitionistic fuzzy primary ideal of R, then for all $x, y \in R, \gamma \in \Gamma$ such that $\mu_Q(x\gamma y) > \mu_Q(x), \nu_Q(x\gamma y) < \nu_Q(x)$ implies that $\mu_Q(x\gamma y) < \mu_{\sqrt{Q}}(y), \nu_Q(x\gamma y) > \nu_{\sqrt{Q}}(y)$.

Example 2.23. ([20]) *Every IFPI of a* Γ *-ring* R *is an IF-primary ideal of* R.

Theorem 2.24. ([20]) Let f be a homomorphism of a Γ -ring R onto a Γ -ring R'. If A is an IFI of R such that A is constant on Ker f, then $\sqrt{f(A)} = f(\sqrt{A})$.

Theorem 2.25. ([20]) Let f be a homomorphism of a Γ -ring R into a Γ -ring R'. If B is an IFI of R, then $\sqrt{f^{-1}(B)} = f^{-1}(\sqrt{B})$.

3 Intuitionistic fuzzy 2-absorbing primary ideals of a Γ -ring

In this section, we introduce and study intuitionistic fuzzy 2-absorbing primary ideal (IF2API) of a Γ -ring R. Throughout this paper we assume that R is a commutative Γ -ring with unity.

Definition 3.1. Let Q be a non-constant IFI of a Γ -ring R. Then Q is called an intuitionistic fuzzy 2-absorbing primary ideal of R if for any IFPs $x_{(p,q)}, y_{(t,s)}, z_{(u,v)}$ of R and $\gamma_1, \gamma_2 \in \Gamma$ such that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q$ implies that either $x_{(p,q)}\gamma_1y_{(t,s)} \subseteq Q$ or $x_{(p,q)}\gamma_2z_{(u,v)} \subseteq \sqrt{Q}$ or $y_{(t,s)}\gamma_2z_{(u,v)} \subseteq \sqrt{Q}$.

Proposition 3.2. Every intuitionistic fuzzy primary ideal of a Γ -ring R is an intuitionistic fuzzy 2-absorbing primary ideal of R.

Proof. The proof is straightforward.

Theorem 3.3. Let Q be an IFI of a Γ -ring R. If Q is an IF2API of R, then $Q_{(\alpha,\beta)}$ is a 2API of Γ -ring R for all $\alpha \in [0, \mu_Q(0)]$ and $\beta \in [\nu_Q(0), 1]$ with $\alpha + \beta \leq 1$ and $Q_{(\alpha, \beta)} \neq R$.

Proof. Let Q be an intuitionistic fuzzy 2-absorbing primary ideal of R and suppose that $x, y, z \in R, \gamma_1, \gamma_2 \in \Gamma$ are such that $x\gamma_1 y\gamma_2 z \in Q_{(\alpha,\beta)}$ for all $\alpha \in [0, \mu_Q(0)]$ and $\beta \in [\nu_Q(0), 1]$ with $\alpha + \beta \leq 1$ and $Q_{(\alpha,\beta)} \neq R$. Then $\mu_Q(x\gamma_1 y\gamma_2 z) \geq \alpha$, $\nu_Q(x\gamma_1 y\gamma_2 z) \leq \beta$ implies $\mu_{(x\gamma_1y\gamma_2z)_{(\alpha,\beta)}}(x\gamma_1y\gamma_2z) = \alpha \leq \mu_Q(x\gamma_1y\gamma_2z) \text{ and } \nu_{(x\gamma_1y\gamma_2z)_{(\alpha,\beta)}}(x\gamma_1y\gamma_2z) = \beta \geq \nu_Q(x\gamma_1y\gamma_2z)$ and so we have $(x\gamma_1 y\gamma_2 z)_{(\alpha,\beta)} \subseteq Q$, i.e., $x_{(\alpha,\beta)}\gamma_1 y_{(\alpha,\beta)}\gamma_2 z_{(\alpha,\beta)} \subseteq Q$. Since Q is an intuitionistic fuzzy 2-absorbing primary ideal of Γ -ring R, we have $x_{(\alpha,\beta)}\gamma_1 y_{(\alpha,\beta)} \subseteq Q$ or $x_{(\alpha,\beta)}\gamma_2 z_{(\alpha,\beta)} \subseteq \sqrt{Q}$ or $y_{(\alpha,\beta)}\gamma_2 z_{(\alpha,\beta)} \subseteq \sqrt{Q}$, i.e., $(x\gamma_1 y)_{(\alpha,\beta)} \subseteq Q$ or $(x\gamma_2 z)_{(\alpha,\beta)} \subseteq \sqrt{Q}$ or $(y\gamma_2 z)_{(\alpha,\beta)} \subseteq \sqrt{Q}$. Thus $x\gamma_1 y \in Q_{(\alpha,\beta)}$ or $x\gamma_2 z \in (\sqrt{Q})_{(\alpha,\beta)} = \sqrt{Q_{(\alpha,\beta)}}$ or $y\gamma_2 z \in \sqrt{Q_{(\alpha,\beta)}}$. Therefore $Q_{(\alpha,\beta)}$ is a 2-absorbing primary ideal of Γ -ring R.

The next example reveal that the opposite of the theorem is not generally true.

Example 3.4. Let $R = \mathbb{Z}$ and $\Gamma = 2\mathbb{Z}$, so that R is a Γ -ring. Define the IFI Q of R by

$$\mu_Q(x) = \begin{cases} 1, & \text{if } x = 0\\ 1/3, & \text{if } x \in 15\mathbb{Z} - \{0\}; \\ 0, & \text{if } x \in \mathbb{Z} - 15\mathbb{Z} \end{cases} \quad \nu_Q(x) = \begin{cases} 0, & \text{if } x = 0\\ 1/2, & \text{if } x \in 15\mathbb{Z} - \{0\}\\ 1, & \text{if } x \in \mathbb{Z} - 15\mathbb{Z}. \end{cases}$$

Since $Q_{(0,1)} = \mathbb{Z}, Q_{(1/3,1/2)} = 15\mathbb{Z}, Q_{(1,0)} = \{0\}$, then we get $Q_{(\alpha,\beta)}$ is a 2-absorbing primary ideal of Γ -ring R. But for $\gamma_1, \gamma_2 \in 2\mathbb{Z}$, we get

$$3_{(1/2,1/3)}\gamma_1 5_{(1/2,1/3)}\gamma_2 1_{(1/3,1/2)} = (3\gamma_1 5\gamma_2 1)_{(1/2\wedge 1/2\wedge 1/3,1/3\vee 1/3\vee 1/2)} = (3\gamma_1 5\gamma_2 1)_{(1/3,1/2)} \subseteq Q$$

and

$$\mu_{3_{(1/2,1/3)}\gamma_15_{(1/2,1/3)}}(3\gamma_15) = \mu_{(3\gamma_15)_{(1/2,1/3)}}(3\gamma_15) = 1/2 > 1/3 = \mu_Q(3\gamma_15).$$

Similarly, we get $\nu_{3_{(1/2,1/3)}\gamma_15_{(1/2,1/3)}}(3\gamma_15) < \nu_Q(3\gamma_15)$. *This implies that* $3_{(1/2,1/3)}\gamma_1 5_{(1/2,1/3)} \nsubseteq Q$.

$$\mu_{3_{(1/2,1/3)}\gamma_2 1_{(1/3,1/2)}}(3\gamma_2 1) = \mu_{(3\gamma_2 1)_{(1/3,1/2)}}(3\gamma_2 1) = 1/3 > 0 = \mu_{\sqrt{Q}}(3\gamma_2 1).$$

Similarly, $\nu_{3_{(1/2,1/3)}\gamma_2 1_{(1/3,1/2)}}(3\gamma_2 1) < \nu_{\sqrt{Q}}(3\gamma_2 1)$. This implies $3_{(1/2,1/3)}\gamma_2 1_{(1/3,1/2)} \nsubseteq \sqrt{Q}$. In the same way, we can show that $5_{(1/2,1/3)}\gamma_2 1_{(1/3,1/2)} \not\subseteq \sqrt{Q}$. Thus Q is not an intuitionistic fuzzy 2-absorbing primary ideal of Γ -ring R.

Corollary 3.5. If Q is an intuitionistic fuzzy 2-absorbing primary ideal of Γ -ring R, then

$$Q_* = \{x \in R : \mu_Q(x) = \mu_Q(0) \text{ and } \nu_Q(x) = \nu_Q(0)\}$$

is a 2-absorbing primary ideal of Γ -ring R.

Proof. Since Q is a non-constant intuitionistic fuzzy ideal of Γ -ring R, then $Q_* \neq R$. Now the result follows from the above theorem.

In the sequel of the paper, for the sake of simplicity, we denote $x^m = x\gamma_1 x\gamma_2 x \cdots \gamma_{m-1} x$ for some $\gamma_1, \gamma_2, \ldots, \gamma_{m-1} \in \Gamma$ and for some $m \in \mathbb{Z}^+$.

Theorem 3.6. Let J be a 2-absorbing primary ideal of Γ -ring R. Then the intuitionistic fuzzy characteristic function χ_J w.r.t. J defined by

$$\mu_{\chi_J}(x) = \begin{cases} 1, & \text{if } x \in J \\ 0, & \text{otherwise} \end{cases}, \quad \nu_{\chi_J}(x) = \begin{cases} 0, & \text{if } x \in J \\ 1, & \text{otherwise} \end{cases}$$

is an IF2API of Γ -ring R.

Proof. We have $J \neq R$ and so $Q = \chi_J$ is non-constant because J is a 2-absorbing primary ideal of R. Assume that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q$, but $x_{(p,q)}\gamma_1y_{(t,s)} \notin Q$ or $x_{(p,q)}\gamma_2z_{(u,v)} \notin \sqrt{Q}$ or $y_{(t,s)}\gamma_2z_{(u,v)} \notin \sqrt{Q}$, where $x_{(p,q)}, y_{(t,s)}, z_{(u,v)}$ are IFPs of R and $\gamma_1, \gamma_2 \in \Gamma$.

Then $\mu_Q(x\gamma_1 y) , <math>\nu_Q(x\gamma_1 y) > q \lor s$, and $\mu_Q\{(x\gamma_2 z)^m\} < \mu_{\sqrt{Q}}(x\gamma_2 z) = p \land u$, $\nu_Q\{(x\gamma_2 z)^m\} > \nu_{\sqrt{Q}}(x\gamma_2 z) = q \lor v$, and $\mu_Q\{(y\gamma_2 z)^m\} < \mu_{\sqrt{Q}}(y\gamma_2 z) = t \land u$, $\nu_Q\{(y\gamma_2 z)^m\} > \mu_{\sqrt{Q}}(y\gamma_2 z) = s \lor v$ for all $m \in \mathbb{Z}$. Hence $\mu_Q(x\gamma_1 y) = 0$, $\nu_Q(x\gamma_1 y) = 1$ and so $x\gamma_1 y \notin J$; $\mu_Q\{(x\gamma_2 z)^m\} = 0$, $\nu_Q\{(x\gamma_2 z)^m\} = 1$ and so $(x\gamma_2 z)^m \notin Q$ implies that $x\gamma_2 z \notin \sqrt{Q}$; $\mu_Q\{(y\gamma_2 z)^m\} = 0$, $\nu_Q\{(y\gamma_2 z)^m\} = 1$ and so $(y\gamma_2 z)^m \notin Q$ implies that $y\gamma_2 z \notin \sqrt{Q}$.

Since J is a 2-absorbing ideal of R, we have $x\gamma_1 y\gamma_2 z \notin J$ and so $\mu_Q(x\gamma_1 y\gamma_2 z) = 0$, $\nu_Q(x\gamma_1 y\gamma_2 z) = 1$ for all $x, y, z \in R$ and $\gamma_1, \gamma_2 \in \Gamma$.

By our hypothesis, we have $(x\gamma_1 y\gamma_2 z)_{(p\wedge t\wedge u,q\vee s\vee v)} = x_{(p,q)}\gamma_1 y_{(t,s)}\gamma_2 z_{(u,v)} \subseteq Q$ and $p \wedge t \wedge u < \mu_Q(x\gamma_1 y\gamma_2 z) = 0, q \vee s \vee v > \nu_Q(x\gamma_1 y\gamma_2 z) = 1$. Hence $p \vee t = 0, q \vee s = 1$ or $p \vee u = 0, q \vee v = 1$ or $t \vee u = 0, s \vee v = 1$, which is a contradiction. Hence $x_{(p,q)}\gamma_1 y_{(t,s)} \subseteq Q$ or $x_{(p,q)}\gamma_2 z_{(u,v)} \subseteq \sqrt{Q}$ or $y_{(t,s)}\gamma_2 z_{(u,v)} \subseteq \sqrt{Q}$ and Q is an intuitionistic fuzzy 2-absorbing primary ideal of Γ -ring R.

Definition 3.7. Let Q be a non-constant IFI of a Γ -ring R. Then Q is called an intuitionistic fuzzy 2-absorbing ideal (IF2AI) of R if for any IFPs $x_{(p,q)}, y_{(t,s)}, z_{(u,v)}$ of R and $\gamma_1, \gamma_2 \in \Gamma$ such that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q$ implies that either $x_{(p,q)}\gamma_1y_{(t,s)} \subseteq Q$ or $x_{(p,q)}\gamma_2z_{(u,v)} \subseteq Q$ or $y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q$.

Theorem 3.8. Every IF2AI of Γ -ring R is an IF2API of R.

Proof. The proof is straightforward.

The next example reveal that the opposite of the above theorem is not true.

Example 3.9. Let $R = \mathbb{Z}$ and $\Gamma = 5\mathbb{Z}$, so R is a Γ -ring. Let $Q = \chi_{12\mathbb{Z}}$. Then Q is an IFI of Γ -ring R. It can be easily verified that Q is an IF2API of R, but it is not an IF2AI of R for $\gamma_1, \gamma_2 \in \Gamma$ such that $2_{(p,q)}\gamma_1 2_{(t,s)}\gamma_2 3_{(u,v)} = (2\gamma_1 2\gamma_2 3)_{(p\wedge t\wedge u,q\vee s\vee v)} \subseteq Q$ implies $2_{(p,q)}\gamma_1 2_{(t,s)} = (2\gamma_1 2)_{(p\wedge t,q\vee s)} \notin Q$, $2_{(p,q)}\gamma_2 3_{(u,v)} = (2\gamma_2 3)_{(p\wedge u,q\vee v)} \notin Q$, $2_{(t,s)}\gamma_2 3_{(u,v)} = (2\gamma_2 3)_{(t\wedge u,s\vee v)} \notin Q$.

Proposition 3.10. If Q is an IF2API of Γ -ring R, then \sqrt{Q} is an IF2AI of R.

Proof. Suppose that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq \sqrt{Q}$ and $x_{(p,q)}\gamma_1y_{(t,s)} \nsubseteq \sqrt{Q}$, where $x_{(p,q)}, y_{(t,s)}, z_{(u,v)} \in IFPs(R)$ and $\gamma_1, \gamma_2 \in \Gamma$.

Since $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} = (x\gamma_1y\gamma_2z)_{(p\wedge t\wedge u,q\vee s\vee v)} \subseteq \sqrt{Q} \Rightarrow \mu_{\sqrt{Q}}(x\gamma_1y\gamma_2z) \ge p\wedge t\wedge u$ and $\nu_{\sqrt{Q}}(x\gamma_1y\gamma_2z) \le q \lor s \lor v$.

From the definition of \sqrt{Q} , we have $\mu_{\sqrt{Q}}(x\gamma_1y\gamma_2z) = \text{Inf}\{\mu_Q((x\gamma_1y\gamma_2z)^m) : m \in \mathbb{N}\} \geq \text{Inf}\{\mu_Q(x^m\gamma_3y^m\gamma_4z^m) : m \in \mathbb{N}\} \geq p \wedge t \wedge u$, for some $\gamma_3, \gamma_4 \in \Gamma$. Similarly, we can show that $\nu_{\sqrt{Q}}(x\gamma_1y\gamma_2z) \leq q \vee s \vee v$.

Then there exists $k \in \mathbb{Z}^+$ such that for some $\gamma'_1, \gamma'_2 \in \Gamma$, $\mu_Q((x\gamma_1y\gamma_2z)^k) \ge \mu_Q(x\gamma_1y\gamma_2z)$ $\ge p \land t \land u$ and $\nu_Q((x\gamma_1y\gamma_2z)^k) \le \nu_Q(x\gamma_1y\gamma_2z) \le q \lor s \lor v$. This implies that $(x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)})^k \in Q$. If $x_{(p,q)}\gamma_1y_{(t,s)} \notin \sqrt{Q}$, then for all $k \in \mathbb{Z}^+$ and for some $\gamma \in \Gamma$, we have $\mu_Q(x_{(p,q)}\gamma_1y_{(t,s)})^k \ge \mu_Q(x_{(p,q)}^k\gamma_1y_{(t,s)})$ and $\nu_Q(x_{(p,q)}\gamma_1y_{(t,s)})^k \le \nu_Q(x_{(p,q)}^k\gamma_1y_{(t,s)})^k$ implies that $x_{(p,q)}\gamma_1y_{(t,s)} \notin \sqrt{Q}$. Since Q is an IF2API of R, then $x_{(p,q)}\gamma_2z_{(u,v)} \subseteq \sqrt{Q}$ or $y_{(t,s)}\gamma_2z_{(u,v)} \subseteq \sqrt{Q}$. Hence \sqrt{Q} is an IF2AI of R.

Definition 3.11. Let Q be an IF2API of Γ -ring R and $P = \sqrt{Q}$ which is an IF2AI of R. Then Q is called an intuitionistic fuzzy P-2-absorbing primary ideal (IFP2API)of R.

Theorem 3.12. Let Q_1, Q_2, \ldots, Q_n be IFP2APIs of Γ -ring R for some IF2AI P of R. Then $Q = \bigcap_{i=1}^n Q_i$ is an IFP2API of R.

Proof. Assume that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q$ and $x_{(p,q)}\gamma_1y_{(t,s)} \notin Q$, for any $x_{(p,q)}, y_{(t,s)}$, $z_{(u,v)} \in IFP(R)$ and $\gamma_1, \gamma_2 \in \Gamma$. Then $x_{(p,q)}\gamma_1y_{(t,s)} \notin Q_j$, for some $j \in \{1, 2, ..., n\}$ and $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q_j$, for all $j \in \{1, 2, ..., n\}$. Since Q_j is an IFP2API of R, we have

$$y_{(t,s)}\gamma_2 z_{(u,v)} \subseteq \sqrt{Q_j} = P = \bigcap_{i=1}^n \sqrt{Q_i} = \sqrt{\bigcap_{i=1}^n Q_i} = \sqrt{Q}$$

or

$$x_{(p,q)}\gamma_2 z_{(u,v)} \subseteq \sqrt{Q_j} = P = \bigcap_{i=1}^n \sqrt{Q_i} = \sqrt{\bigcap_{i=1}^n Q_i} = \sqrt{Q}.$$

Thus Q is an IFP2API of R.

In the next example, we convey that if Q_1, Q_2 are two IF2APIs of a Γ -ring R, then $Q_1 \cap Q_2$ need not to be an IF2API of R.

Example 3.13. Let $R = \mathbb{Z}$ and $\Gamma = p\mathbb{Z}$, where p > 5 is a prime integer. So that R is a Γ -ring. Take $Q_1 = \chi_{50\mathbb{Z}}, Q_2 = \chi_{75\mathbb{Z}}$. Clearly Q_1, Q_2 are IF2APIs of R. But $Q_1 \cap Q_2 = \chi_{150\mathbb{Z}}$ and as such $\sqrt{Q_1 \cap Q_2} = \chi_{30\mathbb{Z}}$, then for $\gamma_1, \gamma_2 \in \Gamma$ such that $25_{(p,q)}\gamma_1 3_{(t,s)}\gamma_2 2_{(u,v)} \subseteq Q_1 \cap Q_2$, but $25_{(p,q)}\gamma_1 3_{(t,s)} \notin Q_1 \cap Q_2$, $25_{(p,q)}\gamma_2 2_{(u,v)} \notin \sqrt{Q_1 \cap Q_2}$ and $3_{(t,s)}\gamma_2 2_{(u,v)} \notin \sqrt{Q_1 \cap Q_2}$. Therefore, $Q_1 \cap Q_2$ is not an IF2API of R.

Theorem 3.14. Let Q be an IFI of a Γ -ring R. If \sqrt{Q} is an IFPI of R, then Q is an IF2API of R.

Proof. Suppose that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq Q$ and $x_{(p,q)}\gamma_1y_{(t,s)} \not\subseteq Q$, for any $x_{(p,q)}, y_{(t,s)}, z_{(u,v)} \in IFP(R)$ and $\gamma_1, \gamma_2 \in \Gamma$.

Since $x_{(p,q)}\gamma_1 y_{(t,s)}\gamma_2 z_{(u,v)} \in Q$ and R is commutative Γ -ring R, we have

 $x_{(p,q)}\gamma_1 y_{(t,s)}\gamma_2 z_{(u,v)}\gamma_2 z_{(u,v)} = (x_{(p,q)}\gamma_1 z_{(u,v)})\gamma_2 (y_{(t,s)}\gamma_2 z_{(u,v)}) \subseteq Q \subseteq \sqrt{Q}.$

Thus $x_{(p,q)}\gamma_1 z_{(u,v)} \subseteq \sqrt{Q}$ or $y_{(t,s)}\gamma_2 z_{(u,v)} \subseteq \sqrt{Q}$. Since \sqrt{Q} is an IFPI of R. Therefore we conclude that Q is an IF2API of R.

4 Homomorphic behaviour of intuitionistic fuzzy 2-absorbing primary ideals

In this section we shall discuss the behaviour of IF2APIs of Γ -ring under Γ -ring homomorphism.

Theorem 4.1. Let $f : R \to R'$ be a surjective Γ -homomorphism. If Q is an IF2API of R which is constant on Ker f, then f(Q) is an IF2API of R'.

Proof. Suppose that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} = (x\gamma_1y\gamma_2z)_{(p\wedge t\wedge u,q\vee s\vee v)} \subseteq f(Q)$, where $x_{(p,q)}, y_{(t,s)}, z_{(u,v)} \in IFP(R')$ and $\gamma_1, \gamma_2 \in \Gamma$. Since f is a surjective Γ -homomorphism, then there exist $a, b, c \in R$ such that f(a) = x, f(b) = y, f(c) = z. Thus

$$\begin{split} \mu_{a_{(p,q)}\gamma_{1}b_{(t,s)}\gamma_{2}c_{(u,v)}}(a\gamma_{1}b\gamma_{2}c) &= \mu_{(a\gamma_{1}b\gamma_{2}c)_{(p\wedge t\wedge u,q\vee s\vee v)}}(a\gamma_{1}b\gamma_{2}c) \\ &= p\wedge t\wedge u \\ &\leq \mu_{f(Q)}(x\gamma_{1}y\gamma_{2}z) \\ &= \mu_{f(Q)}(f(a)\gamma_{1}f(b)\gamma_{2}f(c)) \\ &= \mu_{f(Q)}(f(a\gamma_{1}b\gamma_{2}c)) \\ &= \mu_{f(Q)}(a\gamma_{1}b\gamma_{2}c) \text{ [As }Q \text{ is constant on Ker}f, \text{ so } f^{-1}(f(Q)) = Q] \\ &= \mu_{Q}(a\gamma_{1}b\gamma_{2}c). \end{split}$$

Thus $\mu_{a_{(p,q)}\gamma_1b_{(t,s)}\gamma_2c_{(u,v)}}(a\gamma_1b\gamma_2c) \leq \mu_Q(a\gamma_1b\gamma_2c).$

Similarly, we can show that $\nu_{a_{(p,q)}\gamma_1b_{(t,s)}\gamma_2c_{(u,v)}}(a\gamma_1b\gamma_2c) \geq \nu_Q(a\gamma_1b\gamma_2c)$. Then we get $a_{(p,q)}\gamma_1b_{(t,s)}\gamma_2c_{(u,v)} \subseteq Q$. Since Q is an IF2API of R, then $a_{(p,q)}\gamma_1b_{(t,s)} \subseteq Q$ or $a_{(p,q)}\gamma_2c_{(u,v)} \subseteq \sqrt{Q}$ or $b_{(t,s)}\gamma_2c_{(u,v)} \subseteq \sqrt{Q}$. Thus

$$p \wedge t \leq \mu_Q(a\gamma_1 b) = \mu_{f(Q)}(f(a\gamma_1 b))$$
$$= \mu_{f(Q)}(f(a)\gamma_1 f(b))$$
$$= \mu_{f(Q)}(x\gamma_1 y).$$

Similarly, we can show that $q \lor s \ge \mu_{f(Q)}(x\gamma_1 y)$ and so $(x\gamma_1 y)_{(p \land t, q \lor s)} \subseteq f(Q)$. Thus $x_{(p,q)}\gamma_1 y_{(t,s)} \subseteq f(Q)$ or

$$p \wedge u \leq \mu_{\sqrt{Q}}(a\gamma_2 c) = \mu_{f(\sqrt{Q})}(f(a\gamma_2 c))$$
$$= \mu_{f(\sqrt{Q})}(f(a)\gamma_2 f(c))$$
$$= \mu_{f(\sqrt{Q})}(x\gamma_2 z).$$

Similarly, we can show that $q \vee v \geq \nu_{f(\sqrt{Q})}(x\gamma_2 z)$ and so $(x\gamma_2 z)_{(p \wedge u, q \vee v)} \subseteq f(\sqrt{Q})$. Thus $x_{(p,q)}\gamma_2 z_{(u,v)} \subseteq f(\sqrt{Q})$ or

$$t \wedge u \leq \mu_{\sqrt{Q}}(b\gamma_2 c) = \mu_{f(\sqrt{Q})}(f(b\gamma_2 c))$$
$$= \mu_{f(\sqrt{Q})}(f(b)\gamma_2 f(c))$$
$$= \mu_{f(\sqrt{Q})}(y\gamma_2 z).$$

Similarly, we can show that $s \lor v \ge \nu_{f(\sqrt{Q})}(y\gamma_2 z)$ and so $(y\gamma_2 z)_{(t \land u, s \lor v)} \subseteq f(\sqrt{Q})$. Thus $y_{(t,s)}\gamma_2 z_{(u,v)} \subseteq f(\sqrt{Q})$. Hence f(Q) is an IF2API of R'.

Corollary 4.2. Let $f : R \to R'$ be a surjective Γ -homomorphism. If Q is an IF2API of R which is constant on Ker f, then $f(\sqrt{Q})$ is an IF2AI of R'

Proof. The result follows from Theorem (4.1), Proposition (3.10) and Theorem (2.24). \Box

Theorem 4.3. Let $f : R \to R'$ be a Γ -homomorphism. If Q' is an IF2API of R', then $f^{-1}(Q')$ is an IF2API of R.

Proof. Suppose that $x_{(p,q)}\gamma_1y_{(t,s)}\gamma_2z_{(u,v)} \subseteq f^{-1}(Q')$, where $x_{(p,q)}, y_{(t,s)}, z_{(u,v)} \in IFP(R)$ and $\gamma_1, \gamma_2 \in \Gamma$.

$$p \wedge t \wedge u \leq \mu_{f^{-1}(Q')}(x\gamma_1 y\gamma_2 z)$$

= $\mu_{Q'}(f(x\gamma_1 y\gamma_2 z))$
= $\mu_{Q'}(f(x)\gamma_1 f(y)\gamma_2 f(z)),$

i.e., $p \wedge t \wedge u \leq \mu_{Q'}(f(x)\gamma_1 f(y)\gamma_2 f(z)).$

Similarly, we can show that $q \lor s \lor v \ge \nu_{Q'}(f(x)\gamma_1 f(y)\gamma_2 f(z))$. Let f(x) = a, f(y) = b, f(z) = c. Hence we have that $p \land t \land u \le \mu_{Q'}(a\gamma_1 b\gamma_2 c)$ and $q \lor s \lor v \ge \nu_{Q'}(a\gamma_1 b\gamma_2 c)$ and as such $a_{(p,q)}\gamma_1 b_{(t,s)}\gamma_2 c_{(u,v)} \subseteq Q'$. Since Q' is an intuitionistic fuzzy 2-absorbing primary ideal of R, then $a_{(p,q)}\gamma_1 b_{(t,s)} \subseteq Q'$ or $a_{(p,q)}\gamma_2 c_{(u,v)} \subseteq \sqrt{Q'}$ or $b_{(t,s)}\gamma_2 c_{(u,v)} \subseteq \sqrt{Q'}$. If $a_{(p,q)}\gamma_1 b_{(t,s)} \subseteq Q'$, then

$$p \wedge t \leq \mu_{Q'}(a\gamma_{1}b) = \mu_{Q'}(f(x)\gamma_{1}f(y))$$

= $\mu_{Q'}(f(x\gamma_{1}y))$
= $\mu_{f^{-1}(Q')}(x\gamma_{1}y).$

i.e., $p \wedge t \leq \mu_{f^{-1}(Q')}(x\gamma_1 y)$.

Similarly, we can show that $q \lor s \ge \nu_{f^{-1}(Q')}(x\gamma_1 y)$. Thus we get $x_{(p,q)}\gamma_1 y_{(t,s)} = (x\gamma_1 y)_{(p \land t, q \lor s)} \subseteq f^{-1}(Q')$. If $a_{(p,q)}\gamma_2 c_{(u,v)} \subseteq \sqrt{Q'}$, then

$$p \wedge u \leq \mu_{\sqrt{Q'}}(a\gamma_2 c) = \mu_{\sqrt{Q'}}(f(x)\gamma_2 f(z))$$
$$= \mu_{\sqrt{Q'}}(f(x\gamma_2 z))$$
$$= \mu_{f^{-1}(\sqrt{Q'})}(x\gamma_2 z).$$

 $\text{i.e., } p \wedge u \leq \mu_{f^{-1}(\sqrt{Q'})}(x\gamma_2 z).$

Similarly, we can show that $q \vee v \geq \nu_{f^{-1}(\sqrt{Q'})}(x\gamma_2 z)$. Thus we get $x_{(p,q)}\gamma_2 z_{(u,v)} =$ $(x\gamma_2 z)_{(p\wedge u,q\vee v)} \subseteq f^{-1}(\sqrt{Q'})$. If $b_{(t,s)}\gamma_2 c_{(u,v)} \subseteq \sqrt{Q'}$, then

$$t \wedge u \leq \mu_{\sqrt{Q'}}(b\gamma_2 c) = \mu_{\sqrt{Q'}}(f(y)\gamma_2 f(z))$$
$$= \mu_{\sqrt{Q'}}(f(y\gamma_2 z))$$
$$= \mu_{f^{-1}(\sqrt{Q'})}(y\gamma_2 z).$$

i.e., $t \wedge u \leq \mu_{f^{-1}(\sqrt{Q'})}(y\gamma_2 z)$. Similarly, we can show that $s \vee v \geq \nu_{f^{-1}(\sqrt{Q'})}(y\gamma_2 z)$. Thus we get $y_{(t,s)}\gamma_2 z_{(u,v)} = \sum_{r=1}^{\infty} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2}$ $(y\gamma_2 z)_{(t\wedge u,s\vee v)} \subseteq f^{-1}(\sqrt{Q'})$. Therefore, we see that $f^{-1}(Q')$ is an IF2API of R.

Corollary 4.4. Let $f: R \to R'$ be a Γ -homomorphism. If Q' is an IF2API of R', then $f^{-1}(\sqrt{Q'})$ is an IF2AI of R

Proof. The result follows from Theorem (4.3), Proposition (3.10) and Theorem (2.25).

5 Conclusion

In this paper, we contemplated IF2APIs of a Γ -ring R from a theoretical point of view. We proved that every IF2AI of Γ -ring R is an IF2API, but converse may not be true. With the help of an example we have shown that intersection of two IF2APIs of Γ -ring R need not an IF2API. However, we proved that intersection of a finite number of IFP2APIs of Γ -ring R be an IFP2API. The behaviour of IF2API under Γ -ring homomorphism has been investigated. It is shown that the notion of IF2APIs in Γ -ring inherits most of the essential properties of IF2APIs of commutative ring.

Acknowledgements

The second author would like to thank Lovely Professional University, Phagwara for providing the opportunity to do research work.

References

- Atanassov, K. T. (1983). Intuitionistic fuzzy sets. In: Sgurev, V. (ed) VII ITKR's session, [1] Central Science and Technology Library of the Bulgarian Academy of Sciences, Sofia.
- [2] Badawi, A. (2007). On 2-absorbing ideals of commutative rings. Bulletin of the Australian Mathematical Society, 75, 417–429.
- [3] Badawi, A., Tekir, U., & Yetkin, E. (2014). On 2-absorbing primary ideals in commutative rings. Bulletin of the Australian Mathematical Society, 51(4), 1163–1173.

- [4] Barnes, W. E. (1966). On the Γ -rings of Nobusawa. *Pacific Journal of Mathematics*, 18, 411–422.
- [5] Elkettani, M. Y., & Kasem, A. (2016). On 2-absorbing δ -primary gamma ideal of Γ -ring. International Journal of Pure and Applied Mathematics, 106(2), 543–550.
- [6] Hur, K., Kang, H. W., & Song, H. K. (2003). Intuitionistic fuzzy subgroups and subrings. *Honam Mathematical Journal*, 25, 19–41.
- [7] Hur, K., Su, Y. J., & Kang, H. W. (2005). Intuitionistic fuzzy ideal of a ring. *Journal of the Korean Society Of Mathematical Education, Series B: The Pure And Applied Mathematics*, 12(3), 193–209.
- [8] Kim, K. H., Jun, Y. B., & Ozturk, M. A. (2001). Intuitionistic fuzzy Γ-ideals of Γ-rings/ Scienctiae Mathematicae Japonicae Online, 4, 431–440.
- [9] Kyuno, S. (1978). On prime gamma rings. *Pacific Journal of Mathematics*, 75(1), 185–190.
- [10] Kyuno, S. (1982). Prime ideals in gamma rings. *Pacific Journal of Mathematics*, 98(2), 375–379.
- [11] Nobusawa, N. (1964). On a generalization of the ring theory. Osaka Journal of Mathematics, 1(1), 81–89.
- [12] Onar, S., Yavuz, S., Ersoy, B. A., & Hila, K. (2018). Intuitionistic fuzzy 2-absorbing semiprimary ideals of commutative rings. *Journal of Discrete Mathematical Sciences and Cryptography*, DOI: 10.1080/09720529.2021.1877406.
- [13] Palaniappan, N., & Ramachandran, M. (2010). A note on characterization of intuitionistic fuzzy ideals in Γ-rings. *International Mathematical Forum*, 5(52), 2553–2562.
- [14] Palaniappan, N., & Ramachandran, M. (2011). Intuitionistic fuzzy prime ideals in Γ-rings. *International Journal of Fuzzy Mathematics and Systems*, 1(2), 141–153.
- [15] Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2010). Characterization of intuitionistic fuzzy ideals of Γ-rings. *Applied Mathematical Sciences*, 4(23), 1107–1117.
- [16] Palaniappan, N., Veerappan, P. S., & Ramachandran, M. (2011). Some properties of Intuitionistic fuzzy ideals of Γ -rings. *Thai Journal of Mathematics*, 9(2), 305–318.
- [17] Paul, R. (2015). On various types of ideals of Γ -rings and the corresponding operator rings. International Journal of Engineering Research and Applications, 5(8), 95–98.
- [18] Ramachandran, M. (2010). Some characterization of intuitionistic fuzzy ideals in Γ-rings [Doctoral dissertation, Algappa University]. Shodhganga Repository. http://hdl. handle.net/10603/56561.

- [19] Sharma, P. K., & Lata, H. (2022). Intuitionistic fuzzy characteristic ideals of a Γ-ring. South East Asian Journal of Mathematics and Mathematical Sciences, 18(1), 49–70.
- [20] Sharma, P. K., Lata, H., & Bhardwaj, N. (2023). Intuitionistic fuzzy prime radical and intuitionistic fuzzy primary ideal of Γ-ring. *Creative Mathematics and Informatics*, 32(1) (to appear).
- [21] Warsi, Z. K. (1978). On decomposition of primary ideals of Γ-rings. *Indian Journal of Pure and Applied Mathematics*, 9(9), 912–917.
- [22] Yavuz, S., Onar, D., Sonmez, D., Ersoy, B. A., & Yesilot, G. (2018). Intuitionistic Fuzzy 2-Absorbing Primary Ideals of Commutative Rings. *Turkish Journal of Mathematics and Computer Science*, 8, 37–48.