As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Project:DMEU/Интуиционистки размити множества

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 12:52, 21 August 2011 by Evdokia Sotirova (talk | contribs) (New page: {{Project:DMEU/menu}} Интуиционистки размитите множества (Intuitionistic fuzzy sets) са множества, чиито елементи имат степ...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Изследване на възможностите
за използване на Data Mining
за управление на процеси
в електронен университет


Data Mining in Electronic University
(DMEU)

Интуиционистки размитите множества (Intuitionistic fuzzy sets) са множества, чиито елементи имат степени на принадлежност и непринадлежност. Те са дефинирани от Красимир Атанасов (1983) като разширение на размитите множества на Lotfi Zadeh.

In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition — an element either belongs or does not belong to the set.
As an extension, fuzzy set theory permits the gradual assessment of the membership of elements in a set; this is described with the aid of a membership function valued in the real unit interval [0, 1].
The theory of intuitionistic fuzzy sets further extends both concepts by allowing the assessment of the elements by two functions: for membership and for non-membership, which belong to the real unit interval [0, 1] and whose sum belongs to the same interval, as well.

Intuitionistic fuzzy sets generalize fuzzy sets, since the indicator functions of fuzzy sets are special cases of the membership and non-membership functions and of intuitionistic fuzzy sets, in the case when the strict equality exists: , i.e. the non-membership function fully complements the membership function to 1, not leaving room for any uncertainty.