As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Project:DMEU/Обобщени мрежи

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Изследване на възможностите
за използване на Data Mining
за управление на процеси
в електронен университет


Data Mining in Electronic University
(DMEU)

Обобщените мрежи, ОМ (Generalized nets, GNs) са средство за конструиране на адаптивни, гъвкави и структурирани модели на комплексни системи, в които протичат паралелни във времето процеси и са изградени от множество взаимодействащи си компоненти. Обобщените мрежи представляват значително разширение и обобщение на понятието мрежи на Петри, както и на други разширения и модификации на мрежи на Петри.

Преход от ОМ с m входни позиции и n изходни позиции

Обобщената мрежа е изградена от преходи (transitions). Преходът в контекста на обобщените мрежи е обект от статичната структура на мрежата, който съдържа условията за преминаването на ядра (token) от входните в изходните му позиции (places), след като преходът се е активирал.

От позиция или в позиция на прехода може да излиза или съответно да влиза не повече от една дъга. Позиция, от която излиза дъга се нарича входна за прехода, а позиция, в която влиза дъга се нарича изходна за прехода. Всеки преход в ОМ има поне една входна и поне една изходна позиция. Входна позиция, в която не влиза дъга се нарича вход на мрежата, а изходна позиция, от която не излиза дъга – изход на мрежата. В позициите може да има ядра. Те се преместват от входните към съответните изходни позиции на преходите. Когато настъпи определения за прехода момент от време, и във входните позиции има достатъчен брой ядра, то ядрата от входните позиции придобиват възможност да се придвижат до изходните позиции. Този процес се нарича активиране на прехода. В началото ядрата, които постъпват в мрежата през входните й позиции имат т.нар. начални характеристики. При всяко преминаване през преход в мрежата те получават нови характеристики и така всяко ядро в мрежата е уникално и има своя история. Всяка позиция има свой капацитет.

Формално описание на преход

Преходът Z в ОМ се представя като наредена последователност от седем компоненти:

[math]\displaystyle{ Z = \langle L', L'', t_1, t_2, r, M, \Box \rangle }[/math]

където:

  • [math]\displaystyle{ L' }[/math] са крайно непразно множество от входните позиции на прехода.
  • [math]\displaystyle{ L'' }[/math] са крайно непразно множество от изходните позиции на прехода.
  • [math]\displaystyle{ t_1 }[/math] е момент време на активиране на прехода.
  • [math]\displaystyle{ t_2 }[/math] задава продължителността на активното състояние на прехода.
  • [math]\displaystyle{ r }[/math] е условие на прехода. Представлява индексирана матрица от вида:
    [math]\displaystyle{ r = \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ \hline l'_1 & & & & & \\ ... & & & & & \\ l'_i & & & r_{i,j} & & \\ ... & & & & & \\ l'_m & & & & & \\ \end{array} }[/math]
    където [math]\displaystyle{ r_{i,j} }[/math] са предикати, [math]\displaystyle{ 1 \le i \le m, 1 \le j \le n }[/math]
  • [math]\displaystyle{ M }[/math] задава капацитетите на дъгите. Представлява индексирана матрица от вида:
    [math]\displaystyle{ M = \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ \hline l'_1 & & & & & \\ ... & & & & & \\ l'_i & & & M_{i,j} & & \\ ... & & & & & \\ l'_m & & & & & \\ \end{array} }[/math]
    където [math]\displaystyle{ M_{i,j} \ge 0 }[/math] са естествени числа и [math]\displaystyle{ \infty }[/math], [math]\displaystyle{ 1 \le i \le m, 1 \le j \le n }[/math]
  • [math]\displaystyle{ \Box }[/math] се нарича тип на прехода и представлява булев израз. Ако стойността му е “true” съответният преход може да се активира, а ако е “false” - не. В него участват идентификаторите на всички входни позиции на прехода, свързани с логическите операции "и" [math]\displaystyle{ \land }[/math] и "или" [math]\displaystyle{ \lor }[/math]:
    [math]\displaystyle{ \land(l_{i_1}, l_{i_2},...,l_{i_u}) }[/math] - във всяка входна позиция [math]\displaystyle{ l_{i_1}, l_{i_2},...,l_{i_u} }[/math] трябва да има най-малко по едно ядро,
    [math]\displaystyle{ \lor(l_{i_1}, l_{i_2},...,l_{i_u}) }[/math] - най-малко в една от входните позиции [math]\displaystyle{ l_{i_1}, l_{i_2},...,l_{i_u} }[/math] трябва да има най-малко едно ядро.

Формално описание на Обобщена мрежа

Обобщена мрежа е наредената четворка:

[math]\displaystyle{ \lt \underbrace{ \lt A, \pi_{A}, \pi_{L}, c, f, \theta_{1}, \theta_{2} \gt }_{1.\ Static \ structure}, \underbrace{ \lt K, \pi_{K}, \theta_{K} \gt }_{2. \ Dynamic \ structure}, \underbrace{ \lt T, t^{0}, t^{*} \gt }_{3. \ Time}, \underbrace{ \lt X, \Phi, b \gt }_{4. \ Memory} \gt }[/math]

където:

1. Статична структура (Static structure)
  • [math]\displaystyle{ A }[/math] е множеството от всички преходи в мрежата.
  • [math]\displaystyle{ \pi_{A} }[/math] е функция, задаваща приоритетите на преходите, т.е. [math]\displaystyle{ \pi_{A} : A \rightarrow N }[/math] където N = {0, 1, 2, ...} ∪ {∞}.
  • [math]\displaystyle{ \pi_{L} }[/math] е функция, задаваща приоритетите на позициите, т.е. [math]\displaystyle{ \pi_{L} : L \rightarrow N }[/math].
  • [math]\displaystyle{ c }[/math] е функция, задаваща капацитетите на позициите, т.е. [math]\displaystyle{ c : L \rightarrow N }[/math].
  • [math]\displaystyle{ f }[/math] е функция, определяща вярностната стойност на предикатите.
  • [math]\displaystyle{ \theta_{1} }[/math] задава следващия момент, в който може да се активира прехода. Стойността на тази функция се преизчислява в момента, в който завършва активното състояние на прехода. Оттук [math]\displaystyle{ \theta_{1}(t) = t' }[/math] където [math]\displaystyle{ t, t' \in [T, T+t^*]; t \le t' }[/math]
  • [math]\displaystyle{ \theta_{2} }[/math] е функция, която задава продължителността на активното състояние на даден преход. Стойността й се изчислява в момента, в който се активира прехода. Оттук [math]\displaystyle{ \theta_{2}(t) = t' }[/math] където [math]\displaystyle{ t, t' \in [T, T+t^*]; t' \ge 0 }[/math].


2. Динамична структура (Dynamic structure)
  • [math]\displaystyle{ K }[/math] е множество от ядрата в обобщената мрежа.
  • [math]\displaystyle{ \pi_K }[/math] е функция, която задава приоритетите на ядрата, т.е. [math]\displaystyle{ \pi_{K} : K \rightarrow N }[/math]
  • [math]\displaystyle{ \theta_K }[/math] е функция, която задава момента от време, в който определено ядро може да влезе в ОМ, т.е. [math]\displaystyle{ \theta_K (\alpha)=t }[/math] където [math]\displaystyle{ \alpha \in K, t \in [T; T+t^*] }[/math]


3. Времева компонента (Time)
  • [math]\displaystyle{ T }[/math] е начален момент от време, в който ОМ започва функционирането си. Моментът Т се определя по фиксирана времева скала.
  • [math]\displaystyle{ t^0 }[/math] е времева стъпка на фиксирана времева скала.
  • [math]\displaystyle{ t^* }[/math] продължителност на функционирането на ОМ.


4. Компонента памет (Memory)
  • [math]\displaystyle{ X }[/math] е множество на началните характеристики, с които ядрата влизат в мрежата.
  • [math]\displaystyle{ \Phi }[/math] е характеристична функция. Тя определя новата характеристика на ядрото при преместването му от входната позиция на даден преход в изходната.
  • [math]\displaystyle{ b }[/math] е функция, задаваща максималния брой характеристики, които едно ядро може да получи по време на движението си в ОМ, т.e. [math]\displaystyle{ b : K \rightarrow N }[/math].

References