As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Project:DMEU/Обобщени мрежи

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Изследване на възможностите
за използване на Data Mining
за управление на процеси
в електронен университет


Data Mining in Electronic University
(DMEU)

Обобщени мрежи, ОМ (Generalized nets, GNs) са средство за конструиране на адаптивни, гъвкави и структурирани модели на комплексни системи, в които протичат паралелни във времето процеси и са изградени от множество взаимодействащи си компоненти. Обобщените мрежи представляват значително разширение и обобщение на понятието мрежи на Петри, както и на други разширения и модификации на мрежи на Петри.

Преход от ОМ с m входни позиции и n изходни позиции

Обобщената мрежа е изградена от преходи (Transitions). Преходът в контекста на обобщените мрежи е обект от статичната структура на мрежата, който съдържа условията за преминаването на ядра (Token) от входните в изходните му позиции (Places), след като преходът се е активирал.

От позиция или в позиция на прехода може да излиза или съответно да влиза не повече от една дъга. Позиция, от която излиза дъга се нарича входна за прехода, а позиция, в която влиза дъга се нарича изходна за прехода. Всеки преход в ОМ има поне една входна и поне една изходна позиция. Входна позиция, в която не влиза дъга се нарича вход на мрежата, а изходна позиция, от която не излиза дъга – изход на мрежата. В позициите може да има ядра. Те се преместват от входните към съответните изходни позиции на преходите. Когато настъпи определения за прехода момент от време, и във входните позиции има достатъчен брой ядра, то ядрата от входните позиции придобиват възможност да се придвижат до изходните позиции. Този процес се нарича активиране на прехода. В началото ядрата, които постъпват в мрежата през входните й позиции имат т.нар. начални характеристики. При всяко преминаване през преход в мрежата те получават нови характеристики и така всяко ядро в мрежата е уникално и има своя история. Всяка позиция има свой капацитет.

Формално описание на преход

Преходът Z в ОМ се представя като наредена последователност от седем компоненти:

[math]\displaystyle{ Z = \langle L', L'', t_1, t_2, r, M, \Box \rangle }[/math]

където:

  • [math]\displaystyle{ L' }[/math] са крайно непразно множество от входните позиции на прехода.
  • [math]\displaystyle{ L'' }[/math] са крайно непразно множество от изходните позиции на прехода.
  • [math]\displaystyle{ t_1 }[/math] е момент време на активиране на прехода.
  • [math]\displaystyle{ t_2 }[/math] задава продължителността на активното състояние на прехода.
  • [math]\displaystyle{ r }[/math] е условие на прехода. Представлява индексирана матрица от вида:
    [math]\displaystyle{ r = \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ \hline l'_1 & & & & & \\ ... & & & & & \\ l'_i & & & r_{i,j} & & \\ ... & & & & & \\ l'_m & & & & & \\ \end{array} }[/math]
    където [math]\displaystyle{ r_{i,j} }[/math] са предикати, [math]\displaystyle{ 1 \le i \le m, 1 \le j \le n }[/math]
  • [math]\displaystyle{ M }[/math] задава капацитетите на дъгите. Представлява индексирана матрица от вида:
    [math]\displaystyle{ M = \begin{array}{c|c c c c c} & l''_1 & ... & l''_j & ... & l''_n \\ \hline l'_1 & & & & & \\ ... & & & & & \\ l'_i & & & M_{i,j} & & \\ ... & & & & & \\ l'_m & & & & & \\ \end{array} }[/math]
    където [math]\displaystyle{ M_{i,j} \ge 0 }[/math] са естествени числа и [math]\displaystyle{ \infty }[/math], [math]\displaystyle{ 1 \le i \le m, 1 \le j \le n }[/math]
  • [math]\displaystyle{ \Box }[/math] се нарича тип на прехода и представлява булев израз. Ако стойността му е “true” съответният преход може да се активира, а ако е “false” - не. В него участват идентификаторите на всички входни позиции на прехода, свързани с логическите операции "и" [math]\displaystyle{ \land }[/math] и "или" [math]\displaystyle{ \lor }[/math]:
    [math]\displaystyle{ \land(l_{i_1}, l_{i_2},...,l_{i_u}) }[/math] - във всяка входна позиция [math]\displaystyle{ l_{i_1}, l_{i_2},...,l_{i_u} }[/math] трябва да има най-малко по едно ядро,
    [math]\displaystyle{ \lor(l_{i_1}, l_{i_2},...,l_{i_u}) }[/math] - най-малко в една от входните позиции [math]\displaystyle{ l_{i_1}, l_{i_2},...,l_{i_u} }[/math] трябва да има най-малко едно ядро [math]\displaystyle{ \lbrace l_{i_1}, l_{i_2},...,l_{i_u} \rbrace \subset L' }[/math]
    When the value of a type (calculated as a Boolean expression) is "true", the transition can become active, otherwise it cannot.


Formally described, the generalized net is represented by the following four-tuple:

[math]\displaystyle{ \lt \underbrace{ \lt A, \pi_{A}, \pi_{L}, c, f, \theta_{1}, \theta_{2} \gt }_{1.\ Static \ structure}, \underbrace{ \lt K, \pi_{K}, \theta_{K} \gt }_{2. \ Dynamic \ structure}, \underbrace{ \lt T, t^{0}, t^{*} \gt }_{3. \ Time}, \underbrace{ \lt X, \Phi, b \gt }_{4. \ Memory} \gt }[/math]

where:

1. Static structure
  • [math]\displaystyle{ A }[/math] is a set of transitions (see the formal definition of a transition)
  • [math]\displaystyle{ \pi_{A} }[/math] is a function giving the priorities of the transitions, i.e. [math]\displaystyle{ \pi_{A} : A \rightarrow N }[/math] where N = {0, 1, 2, ...} ∪ {∞}
  • [math]\displaystyle{ \pi_{L} }[/math] is a function giving the priorities of the places, i.e. [math]\displaystyle{ \pi_{L} : L \rightarrow N }[/math]
  • [math]\displaystyle{ c }[/math] is a function giving the place capacities, i.e. [math]\displaystyle{ c : L \rightarrow N }[/math]
  • [math]\displaystyle{ f }[/math] is a function giving the truth value of the predicates. In the basic case, it may obtain values "true" (1) and "false" (0). In fuzzy generalized nets its domain is the [0;1] interval (see fuzzy set) and in the intuitionistic fuzzy generalized nets its domain is the set [0;1]×[0;1] (see intuitionistic fuzzy set).
  • [math]\displaystyle{ \theta_{1} }[/math] is a function giving the next time moment when a given transition will be fired (will become active). Hence, [math]\displaystyle{ \theta_{1}(t) = t' }[/math] where [math]\displaystyle{ t, t' \in [T, T+t^*]; t \le t' }[/math]. The value of this function is being recalculated in the moment when the transition's active state ceases.
  • [math]\displaystyle{ \theta_{2} }[/math] is a function giving the duration of the transition's active state. Hence, [math]\displaystyle{ \theta_{2}(t) = t' }[/math] where [math]\displaystyle{ t, t' \in [T, T+t^*]; t' \ge 0 }[/math]. The value of this function is calculated in the moment when the transition's active state begins.


2. Dynamic structure
  • [math]\displaystyle{ K }[/math] is the set of tokens of the generalized net. In certain cases it is more convenient to denote this set as [math]\displaystyle{ K = \bigcup_{l \in Q^I} K_{l} }[/math] where [math]\displaystyle{ K_{l} }[/math] is the set of all GN tokens which are waiting to enter place [math]\displaystyle{ l }[/math] and [math]\displaystyle{ Q^I }[/math] is the set of all input places in the net.
  • [math]\displaystyle{ \pi_K }[/math] is a function giving the priorities of the tokens, i.e. [math]\displaystyle{ \pi_{K} : K \rightarrow N }[/math]
  • [math]\displaystyle{ \theta_K }[/math] is a function giving the moment of time when a given token may enter the GN, i.e. [math]\displaystyle{ \theta_K (\alpha)=t }[/math] where [math]\displaystyle{ \alpha \in K, t \in [T; T+t^*] }[/math]


3. Time
  • [math]\displaystyle{ T }[/math] is the moment of time when the generalized net starts functioning. This moment is determined according to a fixed global timescale.
  • [math]\displaystyle{ t^0 }[/math] is the elementary time step of the fixed global timescale (the interval with which time increments in the timescale).
  • [math]\displaystyle{ t^* }[/math] is the total duration of functioning of the net.


4. Memory
  • [math]\displaystyle{ X }[/math] is the set of initial characteristics, which tokens may exhibit when they enter the net for first.
  • [math]\displaystyle{ \Phi }[/math] is a characteristic function, which assigns a new characteristic to each token when it makes the transfer from an input to an output place of a given transition.
  • [math]\displaystyle{ b }[/math] is a function giving the maximal number of characteristics, which a given token may obtain during its movement throughout the net, i.e. [math]\displaystyle{ b : K \rightarrow N }[/math]. In general, [math]\displaystyle{ b }[/math] may possess four different values: 0, 1, [math]\displaystyle{ s }[/math] or [math]\displaystyle{ \infty }[/math] meaning that the token keeps, respectively: none of its characteristics, its last characteristic, its last [math]\displaystyle{ s }[/math] characteristics, or all of its characteristics obtained during its movement in the net.