As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Ifigenia:Lecture courses/Generalized nets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 22:11, 22 November 2009 by Vassia Atanassova (talk | contribs) (New page: == Conspect == # Definitions and basic properties of Petri nets and generalized nets (Дефиниции и основни свойства на мрежата на Петри и ...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Conspect

  1. Definitions and basic properties of Petri nets and generalized nets (Дефиниции и основни свойства на мрежата на Петри и на обобщената мрежа)
  2. Reduced generalized nets (Редуцирани ОМ)
  3. Extensions of GN (Разширения на ОМ)
  4. Algebraic aspect of the GN theory (Алгебричен аспект на теорията на ОМ)
  5. Topological aspect of GN theory (Топологичен аспект на теорията на ОМ)
  6. Logical aspect of GN theory (Логически аспект на теорията на ОМ)
  7. Operator aspect of GN theory. Part 1 (Операторен аспект на теорията на ОМ. Част 1)
  8. Operator aspect of GN theory. Part 2 (Операторен аспект на теорията на ОМ. Част 2)
  9. Self-modifying GN (Самомодифициращи се ОМ)
  10. Methodology for construction of generalized nets (Методология за изграждане на ОМ)
  11. Applications of GN in artificial intelligence (Приложения на ОМ в изкуствения интелект)
  12. Applications of GN in biology and medicine (Приложения на ОМ в биологията и медицината)
  13. Applications of GN in transport and industry (Приложения на ОМ в транспорта и промишлеността)
  14. GN in systems theory (ОМ в теорията на системите)
  15. GN as a tool for modelling of real processes (ОМ като средство за моделиране на реални процеси)

Examination

Students may choose to:

  • either prepare a research paper, for instance developing their own GN model of a real process, or working on an open problem from the theory of GNs,
  • or take a regular examination by writing on a theme from the conspect above.

There is a third option for those who are interested in software development of the GN simulator package.

Open problems

Literature