From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation
Jump to search
shortcut
|
http://ifigenia.org/wiki/issue:nifs/31/3/402-425
|
| Title of paper:
|
On Lr-intuitionistic fuzzy Henstock–Kurzweil integral with application to intuitionistic fuzzy Laplace transform
|
| Author(s):
|
A. S. Wungreiphi 0009-0000-6775-9693
|
| Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
|
| wungreiphias@gmail.com
|
Fokrul Alom Mazarbhuiya 0000-0001-8364-8133
|
| Department of Mathematics, Assam Don Bosco University, Tapesia Gardens, Kamarkuchi, Sonapur, Assam, India
|
| fokrul.mazarbhuiya@dbuniversity.ac.in
|
|
| Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 3, pages 402–425
|
| DOI:
|
https://doi.org/10.7546/nifs.2025.31.3.402-425
|
| Download:
|
PDF (300 Kb, File info)
|
| Abstract:
|
This article presents the concept of [math]\displaystyle{ L^r }[/math]-Henstock–Kurzweil integral of intuitionistic fuzzy number-valued function. First, we define the [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral, explore its properties, demonstrate [math]\displaystyle{ L^r }[/math]-continuity of the primitive, and provide a convergence theorem. Furthermore, we show that this integral generalizes intuitionistic fuzzy Henstock–Kurzweil integral, has a broader scope and give a numerical example. We also introduce the proposed integral over an infinite interval and prove that the α- and β-cuts of the integral are Henstock–Kurzweil integrable. Finally, as an application, we define intuitionistic fuzzy Laplace transform based on [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral and investigate the existence of intuitionistic fuzzy Laplace transform.
|
| Keywords:
|
Intuitionistic fuzzy set, [math]\displaystyle{ L^r }[/math]-intuitionistic fuzzy Henstock–Kurzweil integral, [math]\displaystyle{ L^r }[/math]-derivative, [math]\displaystyle{ L^r }[/math]-continuous, Intuitionistic fuzzy Laplace transform.
|
| AMS Classification:
|
03F55, 26E50, 28E10.
|
| References:
|
n/a The list of references of this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
| Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|