Title of paper:
|
Two de-I-fuzzification procedures for intuitionistic fuzzy information
|
Author(s):
|
Vasile Patrascu
|
Research Center in Electrical Engineering, Electronics and Information Technology, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
|
patrascu.v@gmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 30 (2024), Number 1, pages 18–25
|
DOI:
|
https://doi.org/10.7546/nifs.2024.30.1.18-25
|
Download:
|
PDF (193 Kb, File info)
|
Abstract:
|
In this paper, two procedures are proposed that transform intuitionistic fuzzy information into fuzzy information. Using the results obtained with the de-I-fuzzification procedures, formulas for intuitionistic fuzzy entropy are constructed.
|
Keywords:
|
Fuzzy information, Intuitionistic fuzzy information, De-I-fuzzification, Entropy.
|
AMS Classification:
|
03E72.
|
References:
|
- Ansari, A. Q., Philip, J., Siddiqui, S. A., & Alvi, J. A. (2010). Fuzzification of Intuitionistic Fuzzy Sets. International Journal of Computational Cognition, 8(3), 90–91.
- Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.
- Atanassova, L. C. (2023). Three de-intuitionistic fuzzification procedures over circular intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 29(3), 292–297.
- Atanassova, V., & Sotirov, S. (2012). A new formula for de-i-fuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 18(3), 49–61.
- Ban, A., Kacprzyk, J., & Atanassov, K. (2008). On de-I-fuzzification of intuitionistic fuzzy sets. Comptes Rendus de l’Academie bulgare des Sciences, 61(12), 1535–1540.
- De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control, 20, 301–312.
- Kaufmann, A. (1975). Introduction to the Theory of Fuzzy Subsets, Vol. I. Academic Press, New York.
- Kosko, B. (1986). Fuzzy entropy and conditioning. Information Sciences, 40, 165–174.
- Patrascu, V. (2012). Fuzzy Membership Function Construction Based on Multi-Valued Evaluation. Uncertainty Modeling in Knowledge Engineering and Decision Making, World Scientific Press, 756–761.
- Patrascu. V. (2018). Shannon entropy for intuitionistic fuzzy information. Preprint. ArXiV. https://doi.org/10.48550/arXiv.1807.01747.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
- Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118, 467–477.
- Van Leekwijck, W., & Kerre. E. E. (1999). Defuzzification: Criteria and classification. Fuzzy Sets and Systems, 108(2), 159–178.
- Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|