Title of paper:
|
The convergence of intuitionistic fuzzy sets
|
Author(s):
|
Said Melliani
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
s.melliani@usms.ma
|
M'hamed Elomari
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
m.elomari@usms.ma
|
Lalla Saadia Chadli
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
sa.chadli@yahoo.fr
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 1, pages 37–45
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.1.37-45
|
Download:
|
PDF (301 Kb, File info)
|
Abstract:
|
In the present paper, we first introduce a new intuitionistic fuzzy distance. Relationships between three kinds of convergences compared to this distance are studied in this paper. We will give necessary and sufficient conditions to have a convergence equivalence for these four metrics.
|
Keywords:
|
Intuitionistic fuzzy metric, Levelwise convergence, Supported endographs
|
AMS Classification:
|
03F55
|
References:
|
- Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems, 20(1), 87–96.
- Brezis, H. (2010). Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer.
- Castaing, C., & Valadier, M. (1977). Convex Analysis and Measurable Multifunctions, Springer, Berlin.
- Dubois, D., & Prade, H. (1980). Fuzzy Sets and Systems, Academic Press, New York.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Extension of Hukuhara difference in intuitionistic fuzzy set theory. Notes on Intuitionistic Fuzzy Sets, 21(4), 34–47.
- Melliani, S., Elomari, M., Chadli, L.S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric space. Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
- Kaleva, O. (1985). On The Convergence of fuzzy sets. Fuzzy Sets and Systems, 17 (1), 53–65.
- Kloeden, P. E. (1980). Compact supported endographs and fuzzy sets. Fuzzy Sets and Systems, 4, 193–201.
- Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91, 552–558.
- Zadeh L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|