Title of paper:
|
On (r, s)-connectedness in intuitionistic fuzzy topological spaces
|
Author(s):
|
Md. Aman Mahbub
|
Department of Mathematics, Comilla University, Comilla-3506, Bangladesh
|
rinko.math@gmail.com
|
Md. Sahadat Hossain
|
Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
|
sahadat@ru.ac.bd
|
M. Altab Hossain
|
Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
|
al_math_bd@ru.ac.bd
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 1, pages 23–36
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.1.23-36
|
Download:
|
PDF (999 Kb, File info)
|
Abstract:
|
The aim of this paper is to establish the (r, s)-connectedness in intuitionistic fuzzy topological space. Here we give two new notions of (r, s)-connectedness and total (r, s)-connectedness in intuitionistic fuzzy topological space. Also, we find a relation about classical topology and intuitionistic fuzzy topology. Furthermore, using some provisos we will show that (r, s)-connectedness in intuitionistic fuzzy topological spaces are productive and some of its features.
|
Keywords:
|
Fuzzy set, Intuitionistic fuzzy set, Intuitionistic topological space, Intuitionistic fuzzy topological space.
|
AMS Classification:
|
03E72
|
References:
|
- Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On Intuitionistic Fuzzy T0 Spaces. Journal of Bangladesh Academy of Sciences, 38(2), 197–207.
- Ahmed, E., Hossain, M. S., & Ali, D. M. (2015). On Intuitionistic Fuzzy R0 Spaces. Annals of Pure and Applied Mathematics, 10(1), 7–14.
- Ahmed, E., Hossain, M. S., & Ali, D. M. (2015). On Intuitionistic Fuzzy R1 Spaces. Journal of Mathematical and Computational Science, 5(5), 681–693.
- Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On Intuitionistic Fuzzy T1 Spaces. Journal of Physical Sciences, 19, 59–66.
- Ahmed, E., Hossain, M. S., & Ali, D. M. (2014). On Intuitionistic Fuzzy T2 Spaces. IOSR Journal of Mathematics, 10(6), 26–30.
- Ahmad, M. K., & Salahuddin. (2013). Fuzzy Generalized Variational Like Inequality problems in Topological Vector Spaces. Journal of Fuzzy Set Valued Analysis, 2013(1), doi:10.5899/2013/jfsva-00134.
- Ali, A. M., Senthil, S., & Chendralekha, T. (2016). Intuitionistic Fuzzy Sequences in Metric Space. International Journal of Mathematics and its Applications, 4(1–B), 155–159.
- Ali, A. M., & Kanna, G. R. (2017). Intuitionistic Fuzzy Cone Metric Spaces and Fixed Point Theorems. International Journal of Mathematics and its Applications, 5(1–A), 25–36.
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
- Bayhan, S., & Çoker, D. (1996). On fuzzy separation axioms in intuitionistic fuzzy topological space. BUSEFAL, 67, 77–87.
- Bayhan, S., & Çoker, D. (2005). Pairwise Separation axioms in intuitionistic topological Spaces. Hacettepe Journal of Mathematics and Statistics, 34, 101–114.
- Chang, C. L. (1968). Fuzzy Topological Space. Journal of Mathematical Analysis and Application, 24, 182–90.
- Çoker, D. (1996). A note on intuitionistic sets and intuitionistic points. Turkish Journal of Mathematics, 20(3), 343–351.
- Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems, 88(1), 81–89.
- Çoker, D., & Bayhan, S. (2001). On Separation Axioms in Intuitionistic Topological Space, International Journal of Mathematics and Mathematical Sciences, 27(10), 621–630.
- Çoker, D., & Bayhan, S. (2003). On T1 and T2 Separation Axioms in Intuitionistic fuzzy Topological Space. Journal of Fuzzy Mathematics, 11(3), 581–592.
- Das, S. (2013). Intuitionistic Fuzzy Topological Spaces (MS Thesis Paper), Dept. of Math., National Inst. of Tech, India.
- Fang, J., & Guo, Y. (2012). Quasi-coincident neighbourhood structure of relative I-fuzzy topology and its applications. Fuzzy Sets and Systems, 190, 105–117.
- Hassan, Q. E. (2007). On some kinds of fuzzy connected spaces. Applications of Mathematics, 52(4), 353–361.
- Immaculate, H. J., & Arockiarani, I. (2015). A new class of connected spaces in intuitionistic topological spaces. International Journal of Applied Research, 1(9), 720–726.
- Islam, R., Hossain, M. S., & Hoque, M. F. (2020). A study on intuitionistic L-fuzzy T1 spaces. Notes on Intuitionistic Fuzzy Sets, 26(3), 33–42.
- Islam, M. S., Hossain, M. S., & Asaduzzaman, M. (2017). Level Separation on Intuitionistic Fuzzy T0 spaces. International Journal of Fuzzy Mathematical Archive, 13(2), 123–133.
- Islam, M. S., Hossain, M. S., & Asaduzzaman, M. (2018). Level separation on Intuitionistic fuzzy T2 spaces. Journal of Mathematical and Computational Science, 8(3), 353–372.
- Lee, S. J., & Lee, E. P. (2000). The Category of Intuitionistic Fuzzy Topological Space. Bulletin of the Korean Mathematical Society, 37(1), 63–76.
- Lee, S. J., & Lee, E. P. (2004). Intuitionistic Fuzzy Proximity Spaces, International Journal of Mathematics and Mathematical Sciences, 49, 2617–2628.
- Mahbub, M. A., Hossain, M. S., & Hossain, M. A. (2018). Some Properties of Compactness in Intuitionistic Fuzzy Topological Spaces. International Journal of Fuzzy Mathematical Archive, 16(1), 39–48.
- Mahbub, M. A., Hossain, M. S., & Hossain, M. A. (2019). Separation Axioms in Intuitionistic Fuzzy Compact Topological Spaces. ISPACS, 2019(1), 14–23.
- Mahbub, M. A., Hossain, M. S., & Hossain, M. A. (2019). On Q-Compactness in Intuitionistic Fuzzy Topological Spaces. Journal of Bangladesh Academy of Sciences, 43(2), 197–203.
- Mahbub, M. A., Hossain, M. S., & Altab Hossain, M. (2021). Connectedness concept in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets, 27(1), 72–82.
- Minana, J. J., & Sostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric. Fuzzy Sets and Systems, 300, 24–39.
- Ozcag, S., & Çoker, D. (1998). On connectedness in intuitionistic fuzzy special topological spaces. International Journal of Mathematics and Mathematical Sciences, 21, 33–40.
- Ramadan, A. A., Abbas, S. E., & Abd El-Latif, A. A. (2005). Compactness in Intuitionistic Fuzzy Topological Spaces. Int. J. of Math. And Mathematical Sciences, 2005(1), 19–32.
- Sethupathy, K. S. R., & Lakshmivarahan, S. (1977). Connectedness in Fuzzy Topology. Kybernetika, 13(3), 190–193.
- Singh, A. K., & Srivastava, R. (2012). Separation Axioms in Intuitionistic Fuzzy Topological Spaces. Advances in Fuzzy Systems, 2012, Article 604396.
- Srivastava, S., Lal, S. N., & Srivastava, A. K. (1988). On fuzzy T0 and R0 topological spaces. Journal of Mathematical Analysis and Application, 136, 66–73.
- Srivastava, R., & Singh, A. K. (2011). Connectedness in intuitionistic fuzzy topological spaces. Comptes rendus de 1’Academie bulgare des Sciences, 64(9), 1241–1250.
- Talukder, M. A. M., & Ali, D. M. (2013). Some Features of Fuzzy α-Compactness. International Journal of Fuzzy Mathematical Archive, 2, 85–91.
- Tan, N. X. (1985). Quasi variational inequalities in topological linear locally convex Hausdorff spaces. Mathematische Nachrichten, 122, 231–245.
- Tiwari, S. P., & Srivastava, A. K. (2013). Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets and Systems, 210, 63–68.
- Ying-Ming, L., & Mao-Kang, L. (1997). Fuzzy Topology, World Scientific Publishing Co. Pte. Ltd.
- Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8(3), 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|