Title of paper:
|
Martingale convergence theorem for a conditional intuitionistic fuzzy mean value
|
Author(s):
|
Katarína Čunderlíková
|
Mathematical Institute, Slovak Academy of Sciences, Stefanikova 49, 814 73 Bratislava, Slovakia
|
cunderlikova.lendelova@gmail.com
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 2, pages 94–102
|
DOI:
|
https://doi.org/10.7546/nifs.2021.27.2.94-102
|
Download:
|
PDF (205 Kb, File info)
|
Abstract:
|
The aim of this contribution is to show a representation of a conditional intuitionistic fuzzy mean value of intuitionistic fuzzy observables by a conditional mean value of random variables. We formulate a martingale convergence theorem for a conditional intuitionistic fuzzy
mean value, too.
|
Keywords:
|
Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Product, Conditional intuitionistic fuzzy mean value, Martingale convergence theorem.
|
AMS Classification:
|
03B52, 60A86, 60A10, 60G48.
|
References:
|
- Atanassov, K. T. (2016). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Repr. Int. J. Bioautomation, 20, S1–S6.
- Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets, Springer, Berlin.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Physica Verlag, New York.
- Čunderlíková, K. (2021). Conditional intuitionistic fuzzy mean value. Axioms, 10(2), Article No. 97.
- Čunderlíková, K. (2020). A note on mean value and dispersion of intuitionistic fuzzy events. Notes on Intuitionistic Fuzzy Sets, 26 (4), 1–8.
- Lendelová, K. (2006). Conditional IF-probability. Advances in Soft Computing: Soft Methods for Integrated Uncertainty Modelling, 37, Springer, Berlin, Heidelberg, 275–283.
- Lendelová, K., & Rieˇcan, B. (2004). Weak law of large numbers for IF-events. Current Issues in Data and Knowledge Engineering, Bernard De Baets et al. eds., EXIT, Warszawa, 309–314.
- Riečan, B. (2012). Analysis of fuzzy logic models. Intelligent systems (V. Koleshko ed.), INTECH, 219–244.
- Riečan, B. (2006). On the probability and random variables on IF events. Applied Artifical Intelligence, Proc. 7th FLINS Conf. Genova, D. Ruan et al. eds., 138–145.
- Riečan, B., & Neubrunn, T. (1997). Integral, Measure, and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
- Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–358.
- Zadeh, L. A. (1968). Probability measures on fuzzy sets. Journal of Mathematical Analysis and Applications, 23, 421–427.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|