As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On intuitionistic fuzzy prime submodules

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 13:20, 15 December 2018 by Vassia Atanassova (talk | contribs) (Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/24/4/97-112
Title of paper: On intuitionistic fuzzy prime submodules
Author(s):
P. K. Sharma
Post Graduate Department of Mathematics, D.A.V. College, Jalandhar, Punjab, India
pksharma@davjalandhar.com
Gagandeep Kaur
Research Scholar, IKG PT University, Jalandhar, Punjab, India
taktogagan@gmail.com
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 24 (2018), Number 4, pages 97–112
DOI: https://doi.org/10.7546/nifs.2018.24.4.97-112
Download:  PDF (220 Kb  Kb, File info)
Abstract: In this paper, we study intuitionistic fuzzy prime submodules with the help of residual quotient subsets of ring and modules. Also a complete characterisation of an intuitionistic fuzzy prime submodule is given. A relationship between intuitionistic fuzzy prime submodule and intuitionistic fuzzy maximal submodule is established. Homeomorphic image and pre-image of intuitionistic fuzzy prime submodules are obtained.
Keywords: Intuitionistic fuzzy prime (maximal) submodule, Intuitionistic fuzzy prime (maximal) ideal, Residual quotients of intuitionistic fuzzy submodules.
AMS Classification: 03F55, 16D10, 46J20.
References:
  1. Ameri, R., & Mahjoob, R. (2008). Spectrum of prime L-submodules. Fuzzy Sets and Systems, 159, 1107–1115.
  2. Amini, A., Amini, B., & Sharif, H. (2006). Prime and primary submodule of certain modules. Czechoslovak Mathematical Journal, 56 (131), 641–648.
  3. Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1–S6.
  4. Atanassov K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1), 87–96.
  5. Atanassov K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Studies on Fuzziness and Soft Computing, Vol. 35, Physica-Verlag, Heidelberg.
  6. Bakhadach, I., Melliani, S., Oukessou, M., & Chadli, L. S. (2016). Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring, Notes on Intuitionistic Fuzzy Sets, 22 (2), 59–63.
  7. Basnet, D. K. (2011). Topics in Intuitionistic Fuzzy Algebra, Lambert Academic Publishing.
  8. Biswas, R. (1989). Intuitionistic fuzzy subgroup, Mathematical Forum, X, 37–46.
  9. Bland Paul, E. (2012). Rings and Their Modules. Deutsche Nationalbibliothek, Germany.
  10. Davvaz, B., Dudek, W. A., & Jun, Y. B. (2006). Intuitionistic fuzzy Hv-submodules. Information Science, 176, 285–300.
  11. Hur, K., Jang, S. Y., & Kang, H. W. (2005). Intuitionistic Fuzzy Ideals of a Ring. Journal of the Korea Society of Mathematical Education, Series B, 12 (3), 193–209.
  12. Isaac, P., John, P. P. (2011). On Intuitionistic Fuzzy Submodules of a Module. Int. J. of Mathematical Sciences and Applications, 1 (3), 1447–1454.
  13. John, P. P., & Isaac, P. (2012). IFSM’s of an R-Module - A Study. International Mathematical Forum, 19 (7), 935–943.
  14. Mordeson, J. N., & Malik, D. S. (1998). Fuzzy Commutative Algebra, World Scientific Publishing Co-Pvt. Ltd.
  15. Rahman, S., & Saikia, H. K. (2012). Some aspects of Atanassov’s intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics, 77 (3), 369–383.
  16. Sharma, P. K. (2013). (α, β)-Cut of intuitionistic fuzzy modules-II, Int. J. of Mathematical Sciences and Applications, 3 (1), 11–17.
  17. Sharma, P. K., & Kaur, T. (2015). Intuitionistic fuzzy G-modules. Notes on Intuitionistic Fuzzy Sets, 21 (1), 6–23.
  18. Sharma, P. K., & Kaur, G. (2017). Residual quotient and annihilator of intuitionistic fuzzy sets of ring and module, . International Journal of Computer Sciences and Information Techonology, 9(4), 1–15.
  19. Sharma, P. K., & Kaur, G. (2017). Intuitionistic fuzzy prime spectrum of a ring. CiiT International Journal of Fuzzy Systems, 9 (8), 167–175.
  20. Sharma, P. K., & Kaur, G. (2018). On the intuitionistic fuzzy polynomial ideals of a ring. Notes on Intuitionistic Fuzzy Sets, 24 (1), 48–59.
  21. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.