As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:On two new intuitionistic fuzzy topological operators and four new intuitionistic fuzzy feeble modal topological structures

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Revision as of 08:00, 25 April 2023 by Vassia Atanassova (talk | contribs) (Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}} {{issue/title | title = On two new intuitionistic fuzzy topological operators and four new intuitionistic fuzzy feeble modal topological structures | shortcut = nifs/29/1/74-83 }} {{issue/author | author = Krassimir Atanassov | institution = Dept. of Bioinformatics...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
shortcut
http://ifigenia.org/wiki/issue:nifs/29/1/74-83
Title of paper: On two new intuitionistic fuzzy topological operators and four new intuitionistic fuzzy feeble modal topological structures
Author(s):
Krassimir Atanassov
Dept. of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Burgas-8010, Bulgaria
krat@bas.bg
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 29 (2023), Number 1, pages 74–83
DOI: https://doi.org/10.7546/nifs.2023.29.1.74-83
Download:  PDF (194  Kb, File info)
Abstract: In the intuitionistic fuzzy sets theory there are some intuitionistic fuzzy topological operators. Here, two new operators are defined, some of their properties are shown and on their basis, four new intuitionistic fuzzy feeble modal topological structures are introduced and some of their properties are discussed
Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy operation, Intuitionistic fuzzy operator, Intuitionistic fuzzy topological structure.
AMS Classification: 03E72.
References:
  1. Angelova, N., & Stoenchev, M. (2017). Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, 23(5), 29–41.
  2. Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer: Heidelberg.
  3. Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory. Springer: Berlin.
  4. Atanassov, K. (2022). Intuitionistic Fuzzy Modal Topological Structure. Mathematics, 10, 3313.
  5. Atanassov, K. (2022). On the intuitionistic fuzzy modal feeble topological structures. Notes on Intuitionistic Fuzzy Sets, 28(3), 211–222.
  6. Atanassov, K. (2022). On four intuitionistic fuzzy feeble topological structures. Proceedings of the 11th Int. IEEE Conf. “Intelligent Systems”. 12–14 Oct. 2022, Warsaw, Poland. DOI: 10.1109/IS57118.2022.1001972.
  7. Atanassov, K. (2022). On intuitionistic fuzzy modal topological structures with modal operator of second type. Notes on Intuitionistic Fuzzy Sets, 28(4), 457–463.
  8. Atanassov, K. (2023). On Intuitionistic Fuzzy Temporal Topological Structures. Axioms, 12, 182.
  9. Atanassov, K. (in press). On four intuitionistic fuzzy feeble topological structures. Proceedings of the 20th Int. Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, 15 Oct. 2022, Warsaw, Poland.
  10. Feys, R. (1965). Modal Logics, Gauthier, Paris.
  11. Kuratowski, K. (1966). Topology, Volume 1. Academic Press, New York.
  12. Munkres, J. (2000). Topology. Prentice Hall Inc., New Jersey.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.