As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Project:DMEU/Интуиционистки размити множества: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
New page: {{Project:DMEU/menu}} Интуиционистки размитите множества (Intuitionistic fuzzy sets) са множества, чиито елементи имат степ...
 
mNo edit summary
Line 1: Line 1:
{{Project:DMEU/menu}}
{{Project:DMEU/menu}}
Интуиционистки размитите множества (Intuitionistic fuzzy sets)  са множества, чиито елементи имат степени на принадлежност и непринадлежност. Те са дефинирани от Красимир Атанасов (1983) като разширение на размитите множества на Lotfi Zadeh.  
Интуиционистки размитите множества (Intuitionistic fuzzy sets)  са множества, чиито елементи имат степени на принадлежност и непринадлежност. Те са дефинирани от Красимир Атанасов (1983) като разширение на размитите множества на Лотфи Заде (Lotfi Zadeh).
В класическата теория на множествата елемент принадлежи или не принадлежи на множеството. Л. Заде дефинира принадлежност в интервала [0; 1]. Теорията на интуиционистки размитите множества разширява горните концепции, като съпоставя за принадлежност и непринадлежност реални числа в интервала [0, 1], и сумата на тези числа също трябва да принадлежи на интервала [0, 1].


  In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition — an element either belongs or does not belong to the set.
Нека е даден универсумът '''''E'''''. Нека '''''A''''' е подмножество на '''''E'''''. Нека конструираме множеството  
As an extension, fuzzy set theory permits the gradual assessment of the membership of elements in a set; this is described with the aid of a membership function valued in the real unit interval [0, 1].
<div align="center"><math>A^* = \lbrace \langle x, \mu_A(x), \nu_A(x) \rangle \ | \ x \in E \rbrace</math></div>
The theory of intuitionistic fuzzy sets further extends both concepts by allowing the assessment of the elements by two functions: for membership and for non-membership, which belong to the real unit interval [0, 1] and whose sum belongs to the same interval, as well.
където <math>0 \leq \mu_A(x) + \nu_A(x) \leq 1</math>. Ще наричаме '''''A*''''' '''интуиционистки размито множество''' (ИРМ).  
<ref>Paper [[Issue:Intuitionistic fuzzy sets|"Intuitionistic Fuzzy Sets"]], Krassimir T. Atanassov, [[Fuzzy Sets and Systems]], North-Holland, Volume 20 (1986), pages 87-96, ISSN 0165-0114</ref><ref>Book [[Intuitionistic Fuzzy Sets: Theory and Applications|"Intuitionistic Fuzzy Sets"]], Krassimir T. Atanassov, Series "Studies in Fuzziness and Soft Computing", Volume 35, Springer Physica-Verlag, 1999, ISBN 3-7908-1228-5</ref>
Intuitionistic fuzzy sets generalize fuzzy sets, since the indicator functions of fuzzy sets are special cases of the membership and non-membership functions and of intuitionistic fuzzy sets, in the case when the strict equality exists: , i.e. the non-membership function fully complements the membership function to 1, not leaving room for any uncertainty.
Функциите <math>\mu_A: E \to [0,1]</math> и <math>\nu_A: E \to [0,1]</math> задават степента на [[принадлежност (membership)]] и [[непринадлежност (non-membership)]]. Дефинирана е и функцията <math>\pi_A: E \to [0,1]</math> through <math>\pi(x) = 1 - \mu (x) - \nu (x)</math>, съответстваща на степента на [[несигурност (uncertainty)]].
 
Obviously, for every ordinary [[fuzzy set]] <math>A</math>: <math>\pi_A(x) = 0</math> for each <math>x \in E</math> and these sets have the form <math>\lbrace \langle  x, \mu_{A}(x), 1-\mu_{A}(x)\rangle  |x \in E \rbrace.</math>

Revision as of 13:17, 21 August 2011

Изследване на възможностите
за използване на Data Mining
за управление на процеси
в електронен университет


Data Mining in Electronic University
(DMEU)

Интуиционистки размитите множества (Intuitionistic fuzzy sets) са множества, чиито елементи имат степени на принадлежност и непринадлежност. Те са дефинирани от Красимир Атанасов (1983) като разширение на размитите множества на Лотфи Заде (Lotfi Zadeh). В класическата теория на множествата елемент принадлежи или не принадлежи на множеството. Л. Заде дефинира принадлежност в интервала [0; 1]. Теорията на интуиционистки размитите множества разширява горните концепции, като съпоставя за принадлежност и непринадлежност реални числа в интервала [0, 1], и сумата на тези числа също трябва да принадлежи на интервала [0, 1].

Нека е даден универсумът E. Нека A е подмножество на E. Нека конструираме множеството

[math]\displaystyle{ A^* = \lbrace \langle x, \mu_A(x), \nu_A(x) \rangle \ | \ x \in E \rbrace }[/math]

където [math]\displaystyle{ 0 \leq \mu_A(x) + \nu_A(x) \leq 1 }[/math]. Ще наричаме A* интуиционистки размито множество (ИРМ). [1][2] Функциите [math]\displaystyle{ \mu_A: E \to [0,1] }[/math] и [math]\displaystyle{ \nu_A: E \to [0,1] }[/math] задават степента на принадлежност (membership) и непринадлежност (non-membership). Дефинирана е и функцията [math]\displaystyle{ \pi_A: E \to [0,1] }[/math] through [math]\displaystyle{ \pi(x) = 1 - \mu (x) - \nu (x) }[/math], съответстваща на степента на несигурност (uncertainty).

Obviously, for every ordinary fuzzy set [math]\displaystyle{ A }[/math]: [math]\displaystyle{ \pi_A(x) = 0 }[/math] for each [math]\displaystyle{ x \in E }[/math] and these sets have the form [math]\displaystyle{ \lbrace \langle x, \mu_{A}(x), 1-\mu_{A}(x)\rangle |x \in E \rbrace. }[/math]

  1. Paper "Intuitionistic Fuzzy Sets", Krassimir T. Atanassov, Fuzzy Sets and Systems, North-Holland, Volume 20 (1986), pages 87-96, ISSN 0165-0114
  2. Book "Intuitionistic Fuzzy Sets", Krassimir T. Atanassov, Series "Studies in Fuzziness and Soft Computing", Volume 35, Springer Physica-Verlag, 1999, ISBN 3-7908-1228-5