Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.
Issue:On L^r-intuitionistic fuzzy Henstock–Kurzweil integral with application to intuitionistic fuzzy Laplace transform: Difference between revisions
Jump to navigation
Jump to search
start |
+ references |
||
| Line 32: | Line 32: | ||
| ams = 03F55, 26E50, 28E10. | | ams = 03F55, 26E50, 28E10. | ||
| references = | | references = | ||
# Acharya, A., Mahata, A., Sil, N., Mahato, S., Mukherjee, S., Mahato, S. K., & Roy, B. (2023). A prey-refuge harvesting model using intuitionistic fuzzy sets. Decision Analytics Journal, 8, Article ID 100308. | |||
# Ali, W., Shaheen, T., Haq, I. U., Toor, H. G., Alballa, T., & Khalifa, H. A. E.-W. (2023). A novel interval-valued decision theoretic rough set model with intuitionistic fuzzy numbers based on power aggregation operators and their application in medical diagnosis. Mathematics, 11(19), Article ID 4153. | |||
# Allahviranloo, T., & Ahmadi, M. B. (2010). Fuzzy Laplace transforms. Soft Computing, 14, 235–243. | |||
# Atanassov, K. T., Vassilev, P., & Tsvetkov, R. (2013). [[Intuitionistic Fuzzy Sets, Measures and Integrals]]. “Prof. Marin Drinov” Academic Publishing House, Sofia. | |||
# Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. | |||
# Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 33(1), 37–45. | |||
# Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64(2), 159–174. | |||
# Atanassov, K. T. (1992). Remarks on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 51(1), 117–118. | |||
# Bayeg, S., & Mert, R. (2021). [[Issue:On intuitionistic fuzzy version of Zadeh’s extension principle|On intuitionistic fuzzy version of Zadeh’s extension principle]]. Notes on Intuitionistic Fuzzy Sets, 27(3), 9–17. | |||
# Beg, I., Bisht, M., & Rawat, S. (2023). An approach for solving fully generalized intuitionistic fuzzy transportation problems. Computational and Applied Mathematics, 42(329). | |||
# Belhallaj, Z., Elomari, M., Melliani, S., & Chadli, L.S. (2022). On intuitionistic fuzzy Laplace transforms for solving intuitionistic fuzzy partial volterra integro-differential equations. Proceedings of the 8th International Conference on Optimization and Applications (ICOA), 6-7 October 2022, Genoa, Italy, 1–6. | |||
# Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2023). Application of the intuitionistic Laplace transform method for resolution of one dimensional wave equations. International Journal of Difference Equations, 18(1), 211–225. | |||
# Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2022). Solving intuitionistic fuzzy transport equations by intuitionistic fuzzy Laplace transforms. The International Conference on Artificial Intelligence and Engineering 2022 (ICAIE’2022), 9-10 February 2022, Rabat, Morocco, 43, 01021. | |||
# Bongiorno, B., Piazza, L. D., & Musial, K. (2012). A decomposition theorem for the fuzzy Henstock integral. Fuzzy Sets and Systems, 200, 36–47. | |||
# Borkowski. M., & Bugajewska, D. (2018). Applications of Henstock–Kurzweil integrals on an unbounded interval to differential and integral equations. Mathematica Slovaca, 68(1), 77–88. | |||
# Calderon, A. P., & Zygmund, A. (1961). Local properties of solutions of elliptic partial differential equations. Studia Mathematica, 20, 171–225. | |||
# Ettoussi, R., Melliani, S., & Chadli, L. S. (2019). On intuitionistic fuzzy Laplace transforms for second order intuitionistic fuzzy differential equations. In: Melliani, S., & Castillo, O. (Eds.). Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing, Vol. 372, pp. 153–168. Springer, Cham. | |||
# Ettoussi, R., Melliani, S., & Chadli, L. S. (2025). [[Issue:Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order|Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order]]. Notes on Intuitionistic Fuzzy Sets, 31(3), 267–283. | |||
# Ghosh, S., Roy, S. K., Ebrahimnejad, A., & Verdegay, J. L. (2021). Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex and Intelligent Systems, 7(2), 1009–1023. | |||
# Gong, Z., & Hao, Y. (2019). Fuzzy Laplace transform based on the Henstock integral and its applications in discontinuous fuzzy systems. Fuzzy Sets and Systems, 358, 1–28. | |||
# Gong, Z., & Shao, Y. (2009). The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions. Fuzzy Sets and Systems, 160(11), 1528–1546. | |||
# Gong, Z., & Wang, L. (2012). The Henstock–Stieltjes integral for fuzzy-number-valued functions. Information Sciences, 188, 276–297. | |||
# Gong, Z., & Wang, L. (2007). The numerical calculus of expectations of fuzzy random variables. Fuzzy Sets and Systems, 158(7), 722–738. | |||
# Gong, Z., Wu, C., & Li, B. (2002). On the problem of characterizing derivatives for the fuzzy-valued functions. Fuzzy Sets and Systems, 127(3), 315–322. | |||
# Gong, Z., & Wu, C. (2002). Bounded variation, absolute continuity and absolute integrability for fuzzy-number-valued functions. Fuzzy Sets and Systems, 129(1), 83–94. | |||
# Gong, Z. (2004). On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral. Fuzzy Sets and Systems, 145(3), 381–393. | |||
# Gordon, L. (1967). Perron’s integral for derivatives in Lr. Studia Mathematica, 28(3), 295–316. | |||
# Ha, M., & Yang, L. (2009). Intuitionistic fuzzy Riemann integral. 2009 Chinese Control and Decision Conference, 17-19 June 2009, Guilin, China, 3783–3787. | |||
# Henstock, R. (1963). Theory of Integration. Butterworths, London. | |||
# Herawan, T., Abdullah, Z., Chiroma, H., Sari, E. N., Ghazali, R., & Nawi, N. M. (2014). Cauchy criterion for the Henstock–Kurzweil integrability of fuzzy number-valued functions. 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 24-27 September 2014, Delhi, India, 1329–1333. | |||
# Kumar, S., & Gangwal, C. (2021). A study of fuzzy relation and its application in medical diagnosis. Asian Research Journal of Mathematics, 17(4), 6–11. | |||
# Kurzweil, J. (1957). Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Mathematical Journal, 7(3), 418–449. | |||
# Li, L., Wang, S., Zhang, S., Liu, D., & Ma, S. (2023). The hydrogen energy infrastructure location selection model: A hybrid fuzzy decision-making approach. Sustainability, 15(13), Article ID 10195. | |||
# Mondal, S. P., & Roy, T. K. (2015). Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit. TWMS Journal of Applied and Engineering Mathematics, 5(1), 30–45. | |||
# Musial, P., & Sagher, Y. (2004). The Lr Henstock–Kurzweil integral. Studia Mathematica, 160(1), 53–81. | |||
# Musial, P., Skvortsov, V., & Tulone, F. (2022). The HK<sub>r</sub>-integral is not contained in the P<sub>r</sub>-integral. Proceedings of the American Mathematical Society, 150, 2107–2114. | |||
# Musial, P., & Tulone, F. (2019). Dual of the class of HKr of integrable functions. Minimax Theory and Applications, 4(1), 151–160. | |||
# Musial, P., & Tulone, F. (2015). Integration by parts for the Lr Henstock–Kurzweil Integral. Electronic Journal of Differential Equations, 2015(44), 1–7. | |||
# Peng-Yee, L. (1989). Lanzhou Lectures on Henstock Integration. World Scientific, Singapore. | |||
# Sanchez-Perales, S., & Tenorio, J. F. (2014). Laplace transform using the Henstock–Kurzweil integral. Revista de la Union Matem ´ atica Argentina, 55(1), 71–81. | |||
# Shao, Y., Li, Y., & Gong, Z. (2023). On Lr-norm-based derivatives and fuzzy Henstock–Kurzweil integrals with an application. Alexandrian Engineering Journal, 67, 361–373. | |||
# Tikare, A. (2012). The Henstock–Stieltjes integral in Lr. Journal of Advanced Research in Pure Mathematics, 4(1), 59–80. | |||
# Tulone, F., & Musial, P. (2022). The L<sup>r</sup>-variational integral. Mediterranean Journal of Mathematics, 19(3), Article ID 96. | |||
# Wu, C., & Gong, Z. (2001). On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets and Systems, 120(3), 523–532. | |||
# Wungreiphi, A. S., Mazarbhuiya, F. A., & Shenify, M. (2023). On extended L<sup>r</sup>-norm-based derivatives to intuitionistic fuzzy sets. Mathematics, 12(1), 139. | |||
# Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. | |||
| citations = | | citations = | ||
| see-also = | | see-also = | ||
}} | }} | ||
Latest revision as of 22:33, 9 October 2025
shortcut
|
|