As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Issue:Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}} {{issue/title | title = Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order | shortcut = nifs/31/3/267-289 }} {{issue/author | author = Razika Ettoussi | institution = Department of Math..."
 
correct email
 
Line 10: Line 10:
  | institution    = Department of Mathematics, Laboratory of Applied Mathematics and Scientific Computing, FST, Sultan Moulay Slimane University
  | institution    = Department of Mathematics, Laboratory of Applied Mathematics and Scientific Computing, FST, Sultan Moulay Slimane University
  | address        = Beni Mellal, Morocco
  | address        = Beni Mellal, Morocco
  | email-before-at = saman
  | email-before-at = razika.imi
  | email-after-at  = ulm.ac.id
  | email-after-at  = gmail.com
  | orcid          = 0000-0001-8413-6607
  | orcid          = 0000-0001-8413-6607
}}
}}

Latest revision as of 11:00, 23 July 2025

shortcut
http://ifigenia.org/wiki/issue:nifs/31/3/267-289
Title of paper: Intuitionistic fuzzy Laplace Adomian decomposition method for solving intuitionistic fuzzy differential equations of higher order
Author(s):
Razika Ettoussi     0000-0001-8413-6607
Department of Mathematics, Laboratory of Applied Mathematics and Scientific Computing, FST, Sultan Moulay Slimane University, Beni Mellal, Morocco
razika.imi@gmail.com
Said Melliani     0000-0002-5150-1185
Department of Mathematics, Laboratory of Applied Mathematics and Scientific Computing, FST, Sultan Moulay Slimane University, Beni Mellal, Morocco
s.melliani@usms.ma
Lalla Saadia Chadli
Department of Mathematics, Laboratory of Applied Mathematics and Scientific Computing, FST, Sultan Moulay Slimane University, Beni Mellal, Morocco
sa.chadli@yahoo.fr
Published in: Notes on Intuitionistic Fuzzy Sets, Volume 31 (2025), Number 3, pages 267–283
DOI: https://doi.org/10.7546/nifs.2025.31.3.267-289
Download:  PDF (375  Kb, File info)
Abstract: The aim of this work is to introduce the intuitionistic fuzzy Laplace Adomian decomposition method, in which we combine intuitionistic fuzzy Laplace transform with the intuitionistic fuzzy Adomian decomposition method. Furthermore, the methodology of this approach for solving differential equations of higher order in an intuitionistic fuzzy environment has been proposed in detail. Finally, the paper concludes with two numerical examples to demonstrate the application and efficiency of this method, and we have studied their precision.
Keywords: Intuitionistic fuzzy solution, Intuitionistic fuzzy number, Intuitionistic fuzzy Laplace Adomian decomposition.
AMS Classification: 34A07, 44A1, 03E72.
References:
  1. Adomian, G. (Ed.). (1980). Applied Stochastic Processes. Academic Press, New York, pp. 1–18.
  2. Adomian, G. (1982). On Green’s function in higher order stochastic differential equations. Journal of Mathematical Analysis and Applications, 88(2), 604–606.
  3. Adomian, G. (1994). Solving Frontier Problems of Physics: The Decomposition Method. Springer, Dordrecht.
  4. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
  5. Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer PhysicaVerlag, Heidelberg.
  6. Atanassov, K., & Gargov, G. (1990). Intuitionistic fuzzy logic. Comptes rendus de l’Academie bulgare des Sciences, 43(3), 9–12.
  7. Atanassov, K., & Georgiev, C. (1993). Intuitionistic fuzzy Prolog. Fuzzy Sets and Systems, 53(2), 121–128.
  8. Babolian, E., Biazar, J., & Vahidi, A. (2004). A new computational method for Laplace transforms by decomposition method. Applied Mathematics and Computation, 150(3), 841–846.
  9. Biswas, S., Banerjee, S., & Roy, T. K. (2016). Solving intuitionistic fuzzy differential equations with linear differential operator by Adomian decomposition method. Notes on Intuitionistic Fuzzy Sets, 22(4), 25–41.
  10. Davvaz, B., & Sadrabadi, E. H. (2016). An application of intuitionistic fuzzy sets in medicine. International Journal of Biomathematics, 9(3), Article ID 1650037.
  11. De, S. K., Biswas, R. Roy, A. R.(2001). An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems, 117(2), 209–213.
  12. Ettoussi, R., Melliani, S., & Chadli, L. S. (2017). Differential equation with intuitionistic fuzzy parameters. Notes on Intuitionistic Fuzzy Sets, 23(4), 46–61.
  13. Ettoussi, R., Melliani, S., & Chadli, L. S. (2019). On intuitionistic fuzzy Laplace transforms for second order intuitionistic fuzzy differential equations. In: Melliani, S., & Castillo, O. (Eds.). Recent Advances in Intuitionistic Fuzzy Logic Systems. Studies in Fuzziness and Soft Computing, Vol. 372, 153–168. Springer, Cham.
  14. Ettoussi, R., Melliani, S., & Chadli, L. S. (2021). Solution of first order linear intuitionistic fuzzy differential equations by the variation of constants formula. In: Melliani, S., & Castillo, O. (Eds.). Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics. Studies in Fuzziness and Soft Computing, Vol. 395, 177–191. Springer, Cham.
  15. Ettoussi, R., Melliani, S., Elomari, M., & Chadli, L. S. (2015). Solution of intuitionistic fuzzy differential equations by successive approximations method. Notes on Intuitionistic Fuzzy Sets, 21(2), 51–62.
  16. Jafari, H., Khalique, C. M., & Nazari, M. (2011). Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations. Applied Mathematics Letters, 24(11), 1799–1805.
  17. Keyanpour, M., & Akbarian, T. (2014). Solving intuitionistic fuzzy nonlinear equations. Journal of Fuzzy Set Valued Analysis, 2014, 1–6.
  18. Khuri, S. A. (2001). A Laplace decomposition algorithm applied to a class of nonlinear differential equations. Journal of Applied Mathematics, 1(4), 141–155.
  19. Kiymaz, O. (2009). An algorithm for solving initial value problems using Laplace Adomian decomposition method. Applied Mathematical Sciences, 3(30), 1453–1459.
  20. Melliani, S., & Chadli, L. S. (2000). Intuitionistic fuzzy differential equation. Part 1. Notes on Intuitionistic Fuzzy Sets, 6(2), 37–41.
  21. Melliani, S., & Chadli, L. S. (2001). Introduction to intuitionistic fuzzy partial differential equations. Notes on Intuitionistic Fuzzy Sets, 7(3), 39–42.
  22. Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric spaces. Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
  23. Shams, M., Kausar, N., Alayyash, K., Al-Shamiri, M. M., Arif, N., & Ismail, R. (2023). Semi-analytical scheme for solving intuitionistic fuzzy system of differential equations. IEEE Access, 11, 33205–33223.
  24. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.