Title of paper:
|
Existence and uniqueness of intuitionistic fuzzy solution for semilinear intuitionistic fuzzy integro-differential equations with nonlocal conditions
|
Author(s):
|
Zineb Belhallaj
|
LMACS, Laboratory of Applied Mathematics and Scientific Computing Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
zineb.belhallaj@gmail.com
|
M'hamed Elomari
|
LMACS, Laboratory of Applied Mathematics and Scientific Computing Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
m.elomari@usms.ma
|
Said Melliani
|
LMACS, Laboratory of Applied Mathematics and Scientific Computing Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
s.melliani@yahoo.fr
|
Lalla Saadia Chadli
|
LMACS, Laboratory of Applied Mathematics and Scientific Computing Sultan Moulay Slimane University, PO Box 523, 23000 Beni Mellal Morocco
|
sa.chadli@yahoo.fr
|
|
Presented at:
|
25th ICIFS, Sofia, 9—10 September 2022
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 28 (2022), Number 3, pages 259–270
|
DOI:
|
https://doi.org/10.7546/nifs.2022.28.3.259-270
|
Download:
|
PDF (203 Kb, File info)
|
Abstract:
|
n this paper, we study the existence and uniqueness of an intuitionistic fuzzy solution for semi-linear intuitionistic fuzzy integro-differential equations with non-local conditions using the Banach fixed point theorem. Theorem on the existence and uniqueness of intuitionistic fuzzy solution for these problems with nonlocal conditions are presented under certain assumptions. Finally, an example is established to illustrate the effectiveness of this theorem.
|
Keywords:
|
Intuitionistic fuzzy number, Intuitionistic fuzzy integro-differential equation, Intuitionistic fuzzy solution, Banach fixed point theorem.
|
AMS Classification:
|
03E72, 08A72.
|
References:
|
- Alaca, C., Turkoglu, D., & Yildiz, C. (2006). Fixed points in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 29(5), 1073–1078.
- Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
- Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer Physica-Verlag, Heidelberg.
- Balasubramaniam, P., & Muralisankar, S. (2001). Existence and uniqueness of fuzzy solution for the nonlinear fuzzy integrodifferential equations. Applied Mathematics Letters, 14(4), 455–462.
- Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2021). Application of first order-Richardson method to systems of linear equations with fuzzy data. International Journal On Optimization and Applications, 33–36.
- Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2021). Intuitionistic fuzzy transport equation. Notes on Intuitionistic Fuzzy Sets, 27(3), 83–97.
- Belhallaj, Z., Melliani, S., Elomari, M., & Chadli, L. S. (2022). Solving intuitionistic fuzzy transport equations by intuitionistic fuzzy Laplace transforms. ITM Web of Conferences. 43, Article ID 01021. EDP Sciences.
- Dinh Ke, T., Obukhovskii, V., Wong, N. C., & Yao, J. C. (2012). On semilinear integro-differential equations with nonlocal conditions in Banach spaces. Abstract and Applied Analysis, 2012, Article ID 137576.
- Ha, M. H., & Yang, L. Z. (2009). Intuitionistic fuzzy Riemann integral. In: Proceedings of 21st Chinese Control and Decision Conference, CCDC, Guilin, China (17.06.2009–19.06.2009), 3783–3787.
- Heard, M. L. & Rankin, S. M. (1988). A semilinear parabolic integro-differential equation. Journal of Differential Equations, 71(2), 201–233.
- Kwun, Y. C., Park, J. S., Kim, S. Y., & Park, J. H. (2006). Existence and uniqueness of solutions for the semilinear fuzzy integrodifferential equations with nonlocal conditions and forcing term with memory. International Journal of Fuzzy Logic and Intelligent Systems, 6(4), 288–292.
- Lupianez, F. G. (2006). On intuitionistic fuzzy topological spaces. Kybernetes, 35(5), 743–747.
- Melliani, S., Belhallaj, Z., Elomari, M., & Chadli, L. S. (2021). Approximate solution of intuitionistic fuzzy differential equations with the linear differential operator by the homotopy analysis method. Advances in Fuzzy Systems, 2021, Article ID 5579669.
- Melliani, S., & Chadli, L. S. (2001). Introduction to intuitionistic fuzzy partial differential equations. Notes on Intuitionistic Fuzzy Sets, 7(3), 39–42.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric space. Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
- Mohamad, A. (2007). Fixed-point theorems in intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 34(5), 1689–1695.
- Semmouri, A., Mostafa, J., & Belhallaj. Z. (2020). Discounted Markov decision processes with fuzzy costs. Annals of Operations Research, 295(2), 769–786.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|