Title of paper:
|
Intuitionistic fuzzy transport equation
|
Author(s):
|
Zineb Belhallaj
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
zineb.belhallaj@gmail.com
|
Said Melliani
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
s.melliani@usms.ma
|
M'hamed Elomari
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
m.elomari@usms.ma
|
Lalla Saadia Chadli
|
LMACS, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco
|
sa.chadli@yahoo.fr
|
|
Published in:
|
Notes on Intuitionistic Fuzzy Sets, Volume 27 (2021), Number 3, pages 83–97
|
DOI:
|
https://doi.org/10.7546/nifs.2021.27.3.83-97
|
Download:
|
PDF (307 Kb, File info)
|
Abstract:
|
In the present paper, we use the generalized differentiability concept to study the intuitionistic fuzzy transport equation. We consider transport equation in the homogeneous and non-homogeneous cases with intuitionistic fuzzy initial condition. To illustrate the results, we will solve an advection equation using the finite difference method.
|
Keywords:
|
Intuitionistic fuzzy differential equations, Intuitionistic fuzzy transport equation, Finite difference method.
|
AMS Classification:
|
03E72, 35Q49.
|
References:
|
- Atanassov, K. T. (1983). Intuitionistic Fuzzy Sets. VII ITKR Session, Sofia, 20–23.
- Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 61(2), 137–142.
- Atanassov, K. T. (2017). Intuitionistic Fuzzy Logics. Studies in Fuzziness and Soft Computing, 351, Springer, Cham.
- Bede, B., Rudas, I. J., & Bencsik, A. (2007). First order linear differential equations under generalized differentiability. Information Sciences, 177, 1648–1662.
- Bertone, A. M., Jafelice, R. M., Barros, L. C., & Bassanezi, R. C. (2013). On fuzzy solutions for partial differential equations. Fuzzy Sets and Systems, 210, 68–80.
- Melliani, S., Ettoussi, R., Elomari, M., & Chadli, L. S. (2015). Solution of intuitionistic fuzzy differential equations by successive approximations method. Notes on Intuitionistic Fuzzy Sets, 21(2), 51–62.
- Melliani, S., Elomari, M., Chadli, L. S., & Ettoussi, R. (2015). Intuitionistic fuzzy metric space. Notes on Intuitionistic Fuzzy Sets, 21(1), 43–53.
- Melliani, S., Belhallaj, Z., Elomari, M., & Chadli, L. S. (2021). Approximate Solution of Intuitionistic Fuzzy Differential Equations with the Linear Differential Operator by the Homotopy Analysis Method. Advances in Fuzzy Systems.
- Prakash, J., Arun Balaji, R., & Wakgari, D. (2019). A Method for solving fuzzy partial differential equation by fuzzy separation. International Research Journal of Engineering and Technology, 6(1), 77–86.
- Seikkala, S. (1987). On the fuzzy initial value problem. Fuzzy Sets and Systems, 24, 319–330.
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
|
Citations:
|
The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.
|
|