As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: September/October 2024.

Open Call for Papers: International Workshop on Intuitionistic Fuzzy Sets • 13 December 2024 • Banska Bystrica, Slovakia/ online (hybrid mode).
Deadline for submissions: 16 November 2024.

Issue:Multi-parameter temporal intuitionistic fuzzy sets: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
Created page with "{{PAGENAME}} {{PAGENAME}} {{PAGENAME}}..."
 
No edit summary
Line 7: Line 7:
}}
}}
{{issue/author
{{issue/author
  | author          = R. Parvathi
  | author          = Rangasamy Parvathi
  | institution    = Department of Mathematics, Vellalar College for Women
  | institution    = Department of Mathematics, Vellalar College for Women
  | address        = Erode-638 012, Tamil Nadu, India
  | address        = Erode-638 012, Tamil Nadu, India

Revision as of 12:01, 1 June 2016

shortcut
http://ifigenia.org/wiki/issue:nifs/22/1/35-47
Title of paper: Multi-parameter temporal intuitionistic fuzzy sets
Author(s):
Rangasamy Parvathi
Department of Mathematics, Vellalar College for Women, Erode-638 012, Tamil Nadu, India
paarvathis@rediffmail.com
C. Radhamani
Kongu Arts and Science College, Erode-638 107, Tamil Nadu, India
palaniradhu@yahoo.co.in
Published in: "Notes on IFS", Volume 22 (2016) Number 1, pages 35-47
Download:  PDF (264  Kb, File info)
Abstract: Fuzzy sets and intuitionistic fuzzy sets handle uncertainty and vagueness which Cantorian sets could not handle. Temporal intuitionistic fuzzy set with a time domain is an extension of intuitionistic fuzzy set and is useful in dealing with uncertainty and vagueness present in the time dependent real environment. In this paper, a new type of intuitionistic fuzzy set called multiparameter temporal intuitionistic fuzzy set is proposed and it’s operations are defined. Further, extended triangular membership and non-membership functions for temporal intuitionistic fuzzy sets and multi-parameter temporal intuitionistic fuzzy sets are defined. Geometric interpretation of a temporal intuitionistic fuzzy set is also dealt with a suitable example.
Keywords: Temporal intuitionistic fuzzy sets, Multi-parameter temporal intuitionistic fuzzy sets, Extended triangular intuitionistic fuzzification functions.
AMS Classification: 11D79, 11H06.
References:
  1. Atanassov, K. T. (1983) Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia.
  2. Atanassov, K. T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-96.
  3. Atanassov, K. T. (1999) Intuitionistic fuzzy sets: Theory and Applications, Physica-Verlag, Heidelberg.
  4. Atanassov, K. T. (2012) On Intuitionistic fuzzy sets theory, Springer, Berlin, Heidelberg.
  5. Atanassov, K. T., E. Szmidt & J. Kacprzyk. (2008) On intuitionistic fuzzy multi-dimensional sets, Issues in Intuitionistic Fuzzy Sets and Generalized Nets, 7, 1-6.
  6. Atanassov, K. T. , E. Szmidt, J. Kacprzyk & P. Rangasamy. (2008) On intuitionistic fuzzy multi-dimensional sets. Part 2. In: Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics.Vol.I: Foundations, Academic Publishing House EXIT, Warsaw, 43-51.
  7. K.T. Atanassov, E. Szmidt & J. Kacprzyk. (2010) On intuitionistic fuzzy multi-dimensional sets. Part 3. In: Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Vol. I: Foundations, Warsaw, SRI Polish Academy of Sciences, 19-26.
  8. Atanassov, K. T., E. Szmidt & J. Kacprzyk. (2011) On intuitionistic fuzzy multi-dimensional sets. Part 4. Notes on Intuitionistic Fuzzy Sets, 17(2), 1-7.
  9. Dubois, D. & H.Prade. (1980) Fuzzy sets and systems:Theory and Applications, Academic Press, New York.
  10. Pedrycz, W. (1994) Why triangular membership functions?, Fuzzy Sets and Systems, 64, 21-30.
  11. Shaw, A. K. & T. K. Roy. (2012) Some arithmetic operations on triangular intuitionistic fuzzy number and its application on reliability evaluation, International Journal of Fuzzy Mathematics and Systems, 2(4) , 363-382.
  12. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338-353.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.