As of August 2024, International Journal "Notes on Intuitionistic Fuzzy Sets" is being indexed in Scopus.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com. Next issue: March 2025.

Issue:Componentwise decomposition of intuitionistic L-fuzzy integrals and interval-valued intuitionistic fuzzy integrals: Difference between revisions

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search
New page: {{PAGENAME}} {{PAGENAME}} {{PAGENAME}} [[Category:IC...
 
m Text replacement - "Conference proceedings," to ""
 
(4 intermediate revisions by the same user not shown)
Line 16: Line 16:
{{issue/author
{{issue/author
  | author          = Ioan Fechete
  | author          = Ioan Fechete
  | institution    = Technical University of Sofia
  | institution    = Department of Mathematics and Informatics, University of Oradea
  | address        = 8, Kliment Ohridski St. Sofia-1000, Bulgaria
  | address        = Universităţii 1, 410087 Oradea, Romania
  | email-before-at = ifechete
  | email-before-at = ifechete
  | email-after-at  = uoradea.ro
  | email-after-at  = uoradea.ro
Line 23: Line 23:
{{issue/data
{{issue/data
  | conference      = 11<sup>th</sup> [[ICIFS]], Sofia, Bulgaria, 28-30 April 2007
  | conference      = 11<sup>th</sup> [[ICIFS]], Sofia, Bulgaria, 28-30 April 2007
  | issue          = Conference proceedings, [[Notes on Intuitionistic Fuzzy Sets/13/2|"Notes on IFS", Volume 13 (2007) Number 2]], pages 1—7
  | issue          = [[Notes on Intuitionistic Fuzzy Sets/13/2|"Notes on Intuitionistic Fuzzy Sets", Volume 13 (2007) Number 2]], pages 1—7
  | file            = NIFS-13-2-001-007.pdf
  | file            = NIFS-13-2-001-007.pdf
  | format          = PDF
  | format          = PDF
Line 32: Line 32:
  | keywords        =  
  | keywords        =  
  | references      =  
  | references      =  
# Atanassov K., [[Intuitionistic Fuzzy Sets: Theory and Applications|Intuitionistic Fuzzy Sets]], Springer Physica-Verlag, 1999.
 
# Pap. Endre., Null-Additive Set Functions, Kluwer, 1995.
# O. Arieli, C. Cornelis, G. Deschrijver, E. E. Kerre, Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices, in: Applied Computational Intelligence (D. Ruan, P. D’hondt, M. De Cock, M. Nachtegael, E. E. Kerre, Eds.), World Scientific, Singapore, 2004, pp. 57-64.
# K. T. Atanassov, [[Intuitionistic Fuzzy Sets: Theory and Applications]], Springer-Verlag, Heidelberg, New York, 1999.
# K. T. Atanassov, S. Stoeva, Intuitionistic L-fuzzy sets, Cybernetics and Systems Research, 2 (1984), 539-540.
# K. T. Atanassov, G. Gargov, [[Issue:Interval valued intuitionistic fuzzy sets|Interval valued intuitionistic fuzzy sets]], Fuzzy Sets and Systems, 31 (1989), 343-349.
# A. Ban, I. Fechete, Componentwise decomposition of some lattice-valued fuzzy integrals, Information Sciences, 177 (2007), 1430-1440.
# A. I. Ban, [[Intuitionistic Fuzzy Measures: Theory and Applications]], Nova Science, New York, 2006.
# D. Çoker, Fuzzy rough sets are intuitonistic L-fuzzy sets, Fuzzy Sets and Systems, 96 (1998), 381-383.
# G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
# J. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967), 145-174.
# M. Gorzalczany, Interval-valued fuzzy inference method-some basic properties, Fuzzy Sets and Systems, 31 (1989), 243-251.
# M. Grabisch, The symmetric Sugeno integral, Fuzzy Sets and Systems, 139 (2003), 473-490.
# M.Ming, H. Haiping, The abstract (S) fuzzy integrals, Journal of Fuzzy Mathematics, 1 (1993), 89-107.
# S. Nanda, S. Majumdar, Fuzzy rough sets, Fuzzy Sets and Systems, 45 (1992), 157-160.
# M. Sugeno, Theory of fuzzy integrals and its applications, Ph. D. Thesis, Tokyo Institute of Technology, 1974.
# [[T. K. Mondal]], [[S. K. Samanta]], Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 119 (2001), 483-494.
# R. Tcvetkov, [[Issue:Extended Sugeno integrals and integral topological operators over intuitionistic fuzzy sets|Extended Sugeno integrals and integral topological operators over intuitionistic fuzzy sets]], First Int. Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, London, 6-7 Sept. 2006, pp. 132-144.
# G-J. Wang, Y-Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems, 110 (2000), 271-274.
# Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
# G-Q. Zhang, X-L. Meng, Lattice-valued fuzzy integrals of lattice-valued functions with respect to lattice-valued fuzzy measure, Journal of Fuzzy Mathematics, 1(1993), 53-68.


  | citations      =  
  | citations      =  
  | see-also        =  
  | see-also        =  
}}
}}

Latest revision as of 18:44, 28 August 2024

shortcut
http://ifigenia.org/wiki/issue:nifs/13/2/1-7
Title of paper: Componentwise decomposition of intuitionistic L-fuzzy integrals and interval-valued intuitionistic fuzzy integrals
Author(s):
Adrian Ban
Department of Mathematics and Informatics, University of Oradea, Universităţii 1, 410087 Oradea, Romania
aiban@uoradea.ro
Ioan Fechete
Department of Mathematics and Informatics, University of Oradea, Universităţii 1, 410087 Oradea, Romania
ifechete@uoradea.ro
Presented at: 11th ICIFS, Sofia, Bulgaria, 28-30 April 2007
Published in: "Notes on Intuitionistic Fuzzy Sets", Volume 13 (2007) Number 2, pages 1—7
Download:  PDF (141  Kb, File info)
Abstract: We prove a componentwise decomposition theorem of an intuitionistic L-fuzzy integral to its L- fuzzy integrals components, where L is a complete lattice with negation, and a componentwise decomposition theorem of an interval-valued intuitionistic fuzzy integral to its interval-valued fuzzy integrals components.


References:
  1. O. Arieli, C. Cornelis, G. Deschrijver, E. E. Kerre, Relating intuitionistic fuzzy sets and interval-valued fuzzy sets through bilattices, in: Applied Computational Intelligence (D. Ruan, P. D’hondt, M. De Cock, M. Nachtegael, E. E. Kerre, Eds.), World Scientific, Singapore, 2004, pp. 57-64.
  2. K. T. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Verlag, Heidelberg, New York, 1999.
  3. K. T. Atanassov, S. Stoeva, Intuitionistic L-fuzzy sets, Cybernetics and Systems Research, 2 (1984), 539-540.
  4. K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343-349.
  5. A. Ban, I. Fechete, Componentwise decomposition of some lattice-valued fuzzy integrals, Information Sciences, 177 (2007), 1430-1440.
  6. A. I. Ban, Intuitionistic Fuzzy Measures: Theory and Applications, Nova Science, New York, 2006.
  7. D. Çoker, Fuzzy rough sets are intuitonistic L-fuzzy sets, Fuzzy Sets and Systems, 96 (1998), 381-383.
  8. G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems, 12 (2004), 45-61.
  9. J. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications, 18 (1967), 145-174.
  10. M. Gorzalczany, Interval-valued fuzzy inference method-some basic properties, Fuzzy Sets and Systems, 31 (1989), 243-251.
  11. M. Grabisch, The symmetric Sugeno integral, Fuzzy Sets and Systems, 139 (2003), 473-490.
  12. M.Ming, H. Haiping, The abstract (S) fuzzy integrals, Journal of Fuzzy Mathematics, 1 (1993), 89-107.
  13. S. Nanda, S. Majumdar, Fuzzy rough sets, Fuzzy Sets and Systems, 45 (1992), 157-160.
  14. M. Sugeno, Theory of fuzzy integrals and its applications, Ph. D. Thesis, Tokyo Institute of Technology, 1974.
  15. T. K. Mondal, S. K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 119 (2001), 483-494.
  16. R. Tcvetkov, Extended Sugeno integrals and integral topological operators over intuitionistic fuzzy sets, First Int. Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, London, 6-7 Sept. 2006, pp. 132-144.
  17. G-J. Wang, Y-Y. He, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems, 110 (2000), 271-274.
  18. Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.
  19. G-Q. Zhang, X-L. Meng, Lattice-valued fuzzy integrals of lattice-valued functions with respect to lattice-valued fuzzy measure, Journal of Fuzzy Mathematics, 1(1993), 53-68.
Citations:

The list of publications, citing this article may be empty or incomplete. If you can provide relevant data, please, write on the talk page.