As of June 2025, International Journal "Notes on Intuitionistic Fuzzy Sets" has been assigned SJR = 0.258 and Scopus quartile Q3.
Please check our Instructions to Authors and send your manuscripts to nifs.journal@gmail.com.

20th International Workshop on Intuitionistic Fuzzy Sets • 12 December 2025 • Online

Subtractions over intuitionistic fuzzy sets

From Ifigenia, the wiki for intuitionistic fuzzy sets and generalized nets
Jump to navigation Jump to search

For the various definitions of subtraction of over intuitionistic fuzzy sets, the functions sg and sg have been used:

[math]\displaystyle{ \text{sg}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \gt 0 \\ 0 & \text{if } x \leq 0 \end{array}, }[/math]   [math]\displaystyle{ \overline{\text{sg}}(x) = \left \{ \begin{array}{c c} 1 & \text{if } x \lt 0 \\ 0 & \text{if } x \geq 0 \end{array}. }[/math]

List of intuitionistic fuzzy subtractions of —i type

Alternative separated view

List of intuitionistic fuzzy subtractions of —i′ type

No. Ref. Year Subtraction
01 {<x, min(μA(x), νB(x)), max(νA(x), μB(x))>|x ∈ E}
02 {<x, min(μA(x), sgB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
03 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + μB(x)2)>|x ∈ E}
04 {<x, min(μA(x), νB(x)), max(νA(x), 1 - νB(x))>|x ∈ E}
05 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - νB(x)))>|x ∈ E}
06 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(μB(x)))>|x ∈ E}
07 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), μB(x))>|x ∈ E}
08 {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x))>|x ∈ E}
09 {<x, min(μA(x), sgB(x))), max(νA(x), μB(x))>|x ∈ E}
10 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), 1 - νB(x))>|x ∈ E}
11 {<x, min(μA(x), sg(νB(x))), max(νA(x), sgB(x)))>|x ∈ E}
12 {<x, min(μA(x), νB(x).(μB(x) + νB(x))), max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))>|x ∈ E}
13 {<x, min(μA(x), sg(1 - μB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
14 {<x, min(μA(x), sg(νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
15 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
16 {<x, min(μA(x), sgB(x))), max(νA(x), sg(1 - μB(x)))>|x ∈ E}
17 {<x, min(μA(x), sg(1 - νB(x))), max(νA(x), sgB(x)))>|x ∈ E}
18 {<x, min(μA(x), νB(x), sg(μB(x))), max(νA(x), min(μB(x), sg(νB(x))))>|x ∈ E}
19 {<x, min(μA(x), νB(x), sg(μB(x))), νA(x)>|x ∈ E}
20 {<x, min(μA(x), νB(x)), νA(x)>|x ∈ E}
21 {<x, min(μA(x), 1 - μB(x), sg(μB(x))), max(νA(x), min(μB(x), sg(1 - μB(x))))>|x ∈ E}
22 {<x, min(μA(x), 1 - μB(x), sg(μB(x))), νA(x)>|x ∈ E}
23 {<x, min(μA(x), 1 - μB(x)), νA(x)>|x ∈ E}
24 {<x, min(μA(x), νB(x), sg(1 - νB(x))), max(νA(x), min(1 - νB(x), sg(νB(x))))>|x ∈ E}
25 {<x, min(μA(x), νB(x), sg(1 - νB(x))), νA(x)>|x ∈ E}
26 {<x, min(μA(x), νB(x)), max(νA(x), μB(x).νB(x) + sg(1 - μB(x)))>|x ∈ E}
27 {<x, min(μA(x), 1 - μB(x)), max(νA(x), μB(x).(1 - μB(x)) + sg(1 - μB(x)))>|x ∈ E}
28 {<x, min(μA(x), νB(x)), max(νA(x), (1 - νB(x)).νB(x) + sgB(x)))>|x ∈ E}
29 {<x, min(μA(x), max(0, μB(x).νB(x) + sg(1 - νB(x)))), max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))>|x ∈ E}
30 {<x, min(μA(x), μB(x).νB(x), max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))>|x ∈ E}
31 {<x, min(μA(x), (1 - μB(x)).μB(x) + sgB(x))), max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))>|x ∈ E}
32 {<x, min(μA(x), (1 - μB(x)).μB(x), max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))>|x ∈ E}
33 {<x, min(μA(x), νB(x).(1 - νB(x)) + sg(1 - νB(x))), max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))>|x ∈ E}
34 {<x, min(μA(x), νB(x).(1 - νB(x))), max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))>|x ∈ E}

Alternative separated view

No. Ref. Year Subtraction:

{<x, Subtraction MEMBERSHIP expression, Subtraction NON-MEMBERSHIP expression >|x ∈ E}

No. Ref. Year Subtraction MEMBERSHIP expression
Subtraction NON-MEMBERSHIP expression
01 min(μA(x), νB(x)) max(νA(x), μB(x))
02 min(μA(x), sgB(x))) max(νA(x), sg(μB(x)))
03 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + μB(x)2)
04 min(μA(x), νB(x)) max(νA(x), 1 - νB(x))
05 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - νB(x)))
06 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(μB(x)))
07 min(μA(x), sg(1 - νB(x))) max(νA(x), μB(x))
08 min(μA(x), 1 - μB(x)) max(νA(x), μB(x))
09 min(μA(x), sgB(x))) max(νA(x), μB(x))
10 min(μA(x), sg(1 - νB(x))) max(νA(x), 1 - νB(x))
11 min(μA(x), sg(νB(x))) max(νA(x), sgB(x)))
12 min(μA(x), νB(x).(μB(x) + νB(x))) max(νA(x), μB(x).(νB(x)2 + μB(x) + μB(x).νB(x)))
13 min(μA(x), sg(1 - μB(x))) max(νA(x), sg(1 - μB(x)))
14 min(μA(x), sg(νB(x))) max(νA(x), sg(1 - μB(x)))
15 min(μA(x), sg(1 - νB(x))) max(νA(x), sg(1 - μB(x)))
16 min(μA(x), sgB(x))) max(νA(x), sg(1 - μB(x)))
17 min(μA(x), sg(1 - νB(x))) max(νA(x), sgB(x)))
18 min(μA(x), νB(x), sg(μB(x))) max(νA(x), min(μB(x), sg(νB(x))))
19 min(μA(x), νB(x), sg(μB(x))) νA(x)
20 min(μA(x), νB(x)) νA(x)
21 min(μA(x), 1 - μB(x), sg(μB(x))) max(νA(x), min(μB(x), sg(1 - μB(x))))
22 min(μA(x), 1 - μB(x), sg(μB(x))) νA(x)
23 min(μA(x), 1 - μB(x)) νA(x)
24 min(μA(x), νB(x), sg(1 - νB(x))) max(νA(x), min(1 - νB(x), sg(νB(x))))
25 min(μA(x), νB(x), sg(1 - νB(x))) νA(x)
26 min(μA(x), νB(x)) max(νA(x), μB(x).νB(x) + sg(1 - μB(x)))
27 min(μA(x), 1 - μB(x)) max(νA(x), μB(x).(1 - μB(x)) + sg(1 - μB(x)))
28 min(μA(x), νB(x)) max(νA(x), (1 - νB(x)).νB(x) + sgB(x)))
29 min(μA(x), max(0, μB(x).νB(x) + sg(1 - νB(x)))) max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))
30 min(μA(x), μB(x).νB(x) max(νA(x), μB(x).(μB(x).νB(x) + sg(1 - νB(x))) + sg(1 - μB(x)))
31 min(μA(x), (1 - μB(x)).μB(x) + sgB(x))) max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))
32 min(μA(x), (1 - μB(x)).μB(x) max(νA(x), μB(x).((1 - μB(x)).μB(x) + sgB(x))) + sg(1 - μB(x)))
33 min(μA(x), νB(x).(1 - νB(x)) + sg(1 - νB(x))) max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))
34 min(μA(x), νB(x).(1 - νB(x))) max(νA(x), (1 - νB(x)).(νB(x).(1 - νB(x)) + sg(1 - νB(x))) + sgB(x)))


List of intuitionistic fuzzy subtractions of —i′′ type

Alternative separated view

Approaches to defining intuitionistic fuzzy subtractions

References

"What Links Here" References

See also

Ifigenia stub This article is a stub. You can help Ifigenia by expanding it.